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Abstract

Exploring different modes of movement is interesting for children as well as

for physicists. Amongst other things, both apply toy models for their studies,

simplified and often scaled down compared to their real-world analogues.

The toy models used in this project are assemblies of paramagnetic colloidal

particles, for some of which – colloidal bipeds with a rod shape – a combi-

nation of walking and sliding motion has already been realized by means of

topological transport [6]. Childlike curiosity in light of these results leads to

the question whether other movements are also possible. In this work I show

the answer is yes: Applying a superposition of a low- and a high-frequency

magnetic field, colloidal bipeds can bemadewalk and slide independently on

a magnetic stripe pattern, which I demonstrate experimentally and under-

pin with theory and simulation. Furthermore, I present experiments with ei-

ther a varied magnetic pattern [7] or a varied high-frequency magnetic field,

in which the rigidity of the assemblies is broken such that sliding colloidal

bipeds are divided, or non-rod-shaped assemblies are formed and exhibit a

third mode of movement: swimming. These results show, or suggest, how

a time-periodic modulation of foothold and orientation, or shape, can lead

to a displacement in a space-periodic environment. I suppose the concepts

for sliding and walking here developed based on [5] to be also applicable in

correspinding environments in our macroscopic world, e. g. on escalators

and stairs. The colloidal assemblies’ division and shape change still remain

to be investigated thoroughly but might be related to that of cells and other

active particles at low Reynolds numbers.
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Zusammenfassung

Verschiedene Bewegungsarten zu entdecken, ist sowohl für Kinder als auch

für Physiker*innen interessant. Für ihre Studien verwenden beide unter an-

derem Spielzeugmodelle, vereinfacht und oft verkleinert im Vergleich zu ih-

ren Analoga in der realen Welt. Die Spielzeugmodelle in diesem Projekt sind

Strukturen aus paramagnetischen kolloidalen Partikeln, für derer manche

– stäbchenförmige kolloidale Bipeds – bereits eine Kombination aus Lauf-

und Gleitbewegung mittels topologischen Transports realisiert wurde [6].

Angesichts dieser Ergebnisse führt kindliche Neugier auf die Frage, ob an-

dere Bewegungsarten auchmöglich sind. In dieser Arbeit bejahe ich die Fra-

ge: Unter Einsatz einer Überlagerung eines hoch- und eines niederfrequen-

ten Magnetfelds können kolloidale Bipeds auf einem magnetischen Strei-

fenmuster unabhängig voneinander zum Laufen und zum Gleiten gebracht

werden, was ich mit Experimenten demonstriere und mit Theorie und Si-

mulation untermauere. Ferner zeige ich Experimente entweder mit einem

abgewandelten magnetischen Muster [7] oder einem abgewandelten hoch-

frequenten Magnetfeld, in welchem die Starrheit der Strukturen gebrochen

wird; so werden gleitende kolloidale Bipeds gespalten, oder nicht stäbchen-

förmige Strukturen formen sich und zeigen eine dritte Art der Bewegung:

schwimmen. Diese Ergebnisse zeigen, oder legen nahe, wie eine zeitlich pe-

riodische Modulation von Bodenhaftung und Orientierung, oder der Form,

zur Fortbewegung in einer räumlich periodischen Umgebung führen kann.

Ich nehme an, dass die auf Basis von [5] entwickelten Konzepte zur Be-

schreibung von Laufen und Gleiten auch in entsprechenden Umgebungen

in unserer makroskopischen Welt anwendbar sind, z.B. auf (Roll-)Treppen.

Die Teilung und Formveränderung der kolloidalen Strukturen bleibt noch

gründlich zu untersuchen, könnte aber in Zusammenhang mit jener von Zel-

len und anderen aktiven Teilchen bei niedrigen Reynoldszahlen stehen.
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1 Introduction

Time flies. Now, having reached the end of my studies, I often find myself

reviewing the past years at university, becoming aware what I have expe-

rienced and learned during that time. And, going back further, I see that

each of the previous stations I remember – voluntary service, school, and

kindergarten – have given me something and made me grow up a bit.

Luckily, there are also some things that haven’t changed so much. I still

like playing, especially with moving toys. Surely I am not the only one still

fascinated by model cars, walking robots or boats. Now, as a physics student

I can justify using them: The toys help understanding how their real-world

analogues work. But honestly, as in my childhood it is also just fun to play

with them.

This already summarizes the motivation behind the present Master’s pro-

ject, where I have dealt with assemblies of paramagnetic colloidal particles

(see Figure 1c) and made them propel in different ways. Let me give a short

outline: The assemblies hold together thanks to the magnetic dipolar inter-

action between the single particles, induced by a high-frequency magnetic

field. This field, as we will see later, allows for controlling the orientation

and the shape of the assemblies. The playground where I have placed the

particles is a substrate with a static, spatially periodic magnetic pattern

(also seen in Figure 1c). The foothold of the assemblies is controlled by a

low-frequency magnetic field. We are discussing this in Section 2.

In Section 3, we will look into the case where the high-frequency field

is oscillating and makes our toys, the assemblies, rod-shaped. We will see

that they are then able to walk (like humans on solid ground) and slide (like

humans being carried with an escalator) independently. This makes them

similar to, but more agile than the bipeds investigated by Mahla Mirzaee-

Kakhki [5], a former member of Thomas Fischer’s group. Therefore we will

call them agile bipeds.

Furthermore, the assemblies can be made even more agile and interest-

ing by going away from the rigid rod shape. We will see that in Section 4,

which deals with the division and joining of bipeds, and in Section 5, where

we shortly dive into a swimming-like motion of non-rod-shaped assemblies

arising when the high-frequency field is rotating.

Before we finally arrive at this point of a partially independent control of

shape and transport, which is the current front of this research project, let

us now look into some background information on the setup and the concept

of topological transport. This is crucial for the entire project.
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Figure 1 (see page 6): Setup. (a) Coils producing a homogeneous, time-

periodic external magnetic field 𝐇ext, driven by a three-channel wave gen-

erator connected to three current amplifiers (not shown). The field compo-

nents in 𝑥 and 𝑦 directions are produced by the two upright coil pairs, the

𝑧 component evolves from the single, flat-lying coil. (b) Current through

the coils, displayed by an oscilloscope. It is proportional to the magnetic

field component produced by each coil. Details about the time modulation

will be given in later sections. (c) Reflection-microscopy image of the used

ferromagnetic stripe pattern with paramagnetic particles (top view). The

gray stripes are magnetized in +𝑧 (out-of-plane) direction, the green stripes

are magnetized oppositely. One can see single colloidal particles and bipeds

(rods) on top of the pattern. A more detailed description of bipeds can be

found in Section 3.1.

2 Background

2.1 Setup

The central part of the setup are thementioned paramagnetic colloidal parti-

cles placed on the ferromagnetic substrate, which is patterned with up and

down magnetized stripes (lattice constant 𝑎 = 7µm, see Figure 1c). The

stripes produce a stationary, space-periodic magnetic field 𝐇p. This pattern

field is superimposed by a time-periodic, homogeneous external field 𝐇ext

of modulus 4kAm−1 (Figure 1b). The external field is produced by two coil

pairs in 𝑥 and 𝑦 direction and a single coil in 𝑧 direction (Figure 1a), driven

by a three-channel wave generator and three current amplifiers.

The particles have diameter 𝑑 = 2.8µm and are parmagnetic with an ef-

fective magnetic susceptibility 𝜒eff = 0.6 [6, p. 1664]. They are immersed in

demineralized water and their (overdamped) motion is caused by magnetic1

forces.

A final but important detail is that the substrate is coated with a poly-

mer film (thickness or height ℎ ≈ 1.6µm [4, p. 5055]), on top of which the

particles are placed. This implies that the particles always have at least

the elevation ℎ above the pattern and so are only feeling a pattern field 𝐇p

that is a “blurred” version of the pattern magnetization; they experience the

universal pattern field.

This universal field corresponds to the blurred pattern in the sense that,

up to a scaling factor, its Fourier series equals that of the magnetization pat-

tern, however truncated to only the leading Fourier components. This holds

because the magnetic field is curl-free in the current-free, non-permeable

space above the magnetic pattern, and so can be described by a magnetic

1And sometimes, at sufficiently high velocities, also hydrodynamic.

7



potential 𝜓 fulfilling the Laplace equation. From the representation of the

Laplace equation in Fourier space,

((i𝑞𝑥)2 + (i𝑞𝑦)2 + (i𝑞𝑧)2) 𝜓 = 0, (1)

together with the fact that 𝑞𝑥 and 𝑞𝑦 are real due to the periodicity of the

pattern, we can conclude 𝑞𝑧 = ±i𝑞⟂ ∶= ±i√𝑞2𝑥 + 𝑞2𝑦. Since the boundary

condition 𝐻p

𝑧→∞
−−−−→ 0 is only fulfilled for the case of a pattern field that ex-

ponentially decays with the elevation above the pattern, the Fourier coef-

ficients of the exponantially increasing solution vanish completely. As the

decay constant of each mode is given by 𝑞⟂, at sufficiently high elevation

above the pattern the lowest Fourier mode (for the stripe pattern: 𝑞⟂ =
2𝜋
𝑎
)

will be dominating over all others, and the details of the magnetization pat-

tern become unimportant [4, p. 5046]. So, conversely, only those properties

of the pattern which determine the lowest Fourier mode are relevant. For

the periodic patterns used in this thesis, the stripe and the square pattern,

that are just the symmetry properties of the pattern [4, p. 5067].

2.2 Adiabatic and robust transport

The polymer film simplifies the theoretical treatment of the magnetic forces

by the external and pattern magnetic fields: It allows us to calculate the

two-dimensional energy landscape in which the particles reside, and which

is generated by both fields. The external field is modulated with time so that

this potential landscape changes; however, this modulation is slow enough

for the particles to stay trapped in their minima and move with them. So

the particles follow the minimum positions and don’t “march through”, i. e.

aren’t thermally excited across the barrier between two potential wells. This

is called an adiabatic process. In this way, given the specific pattern, the ex-

ternal magnetic field – if chosen appropriately – instantaneously determines

the state of the system. It can hence be used to control the particles, and the

space where all appropriate external field vectors (that is, the vectors of the

homogeneous external magnetic vector fields) live is called control space 𝒞.
The space where we observe the motion of the colloids is the action space

𝒜 [4, p. 5046].

Figure 2 illustrates this principle for a one-dimensional case: On the left,

the external field is depicted as red arrow. In our experiments the modulus

of the external field generally stays constant, and so the control space – the

region in which the tip of the red arrow moves – has the form of a circular

ring (white/gray/black ring in left part of figure). In this example the control

space is one-dimensional and can thus be parametrized by a single control

parameter 𝑠, the same which can also parametrize the path of the arrow tip

(line inside the ring). As already indicated in the previous paragraph, the
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potential landscape in action space (gray mountains in right part of Figure)

changes when the external field changes and so here the minimum position

follows a path in action space (gray/green stripe). This path is drawn in the

right of Figure 2 and can also be parametrized by the control parameter 𝑠.
In Figure 2, both for control and action space path the parameter values are

symbolized by the changing lightness.

Figure 2, as well as Figure 1c, already suggests that we restrict our in-

vestigation to systems that are periodic in space and time, as imposed by

the space-periodic, static pattern and the time-periodic, homogeneous ex-

ternal field. Therefore the control and action space trajectories are closed

in a reduced zone scheme and we call them control loop and action loop2 [3,

p. 3]. Both periodicities again facilitate the theoretical description: As the

potential landscape looks the same after one temporal period, the potential

minima with their enslaved particles must be in an equivalent position as

before, which means the particles have been transported a lattice vector

apart or find themselves at the same place again3. Which of these cases

holds is, following what we have seen above, completely determined by the

control loop.

In the figure the control space has a hole which the control loop winds

around, i. e. the control space is not simply connected. This is necessary for

transport to occur, as we discuss in the following.

Under the assumption the potential continuously depends on the external

field, a small deformation of the loop will also cause a small deformation of

the particle path and hence also a small deformation of the displacement af-

ter completing one control loop period. This displacement after completion

of one control loop, on the other hand, must always equal a lattice vector.

Now the only possibility of a small displacement which is a lattice vector is

a zero displacement. So the particle even has to experience zero change

under gentle deformations of the loop; the transport is robust.

From this it follows that nontrivial transport by a non-zero lattice vec-

tor can only happen if the loop winds around some hole in control space.

Otherwise the loop could continuously be contracted to a point while the

displacement being invariant, but a loop contracted to a point means just a

static field and hence no transport. Any deformation of the loop that leads

to a different displacement thus necessarily is non-continuous; it needs to

pull the loop through the hole, and meanwhile eventually an intermediate

state must occur where the adiabatic conditions are not fulfilled.

To understand what that means, i. e. what happens in the hole, let’s con-

sider a gedankenexperiment of a particle being transported in a minimum

by a loop, with the loop being continuously deformed. As long as the par-

2The action loop is closed in the sense that we can describe action space as single unit cell
with periodic boundary conditions, see later.

3Which is a special case of the former, with the zero vector as lattice vector.
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Figure 2: Basic principle of topological transport. In the control space 𝒞
(white/gray/black ring in left part) the external magnetic field (red arrow)

draws the control loop (curved white/gray/black line). After one period, the

control loop will be completed and form a closed path. In the action space

𝒜 (gray/green stripe in right part), for each point in control space there is

a potential (gray landscape) with (here) one minimum and one maximum.

Running the control loop changes the potential so that the minimum moves

along the action loop (straight white/gray/black line). After one period, the

minimum will have moved one lattice constant; then also the action loop

can be considered closed due to the periodicity of the pattern, see Figure 3

below. The lightness modulation of the action and control loops represents

their parametrization by the control parameter 𝑠. The minimum can enslave

a particle (not shown) that follows its position. The control fence is at the

hinge (transparent red circle) of the red arrow.
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ticle always stays in that named minimum, the displacement after one pe-

riod will be the same. But now assume we manage to deform the loop into

another one yielding a different displacement. As the particle won’t leave

its minimum in the overdamped system, at some point the minimum has to

disappear (e. g. by the potential becoming flat in one direction or by the

minimum turning into a saddle point). Just this will happen if the control

loop crosses4 some specific set of points in the holes of control space. Let’s

call this set control fence. In the example from Figure 2, the control fence is

at the hinge (transparent red circle) of the red arrow. (Why that is the case

we will discuss in Section 3.3.)

2.3 Topological transport

We can get a deeper understanding of this transport process when looking

at the product space 𝒞 × 𝒜 [2, p. 3]. The case shown in Figure 2 – the

transport over a one-dimenisonal pattern (our stripes) by modulation of a

single control parameter – assumably is the simplest one to visualize. In this

example, both 𝒜 and 𝒞 are one-dimensional; hence 𝒞×𝒜 is two-dimensional

and is depicted as a rectangle in the left part of Figure 3. However, 𝒞 and 𝒜
should not really be thought of as stripes. Their ends correspond to the same

state (for 𝒞) or to equivalent ones (for 𝒜, being one lattice vector apart) and

can thus be joined. Consequently, also opposite sides of the product space

rectangle can be joined and 𝒞 × 𝒜 becomes a torus (right part of Figure 3).

The points which form the white/gray/black line on this product space

torus are the control loop points together with their corresponding action

loop points. We will call the set of this points just the loop. For complete-

ness we note that in our case, with both 𝒞 and 𝒜 being one-dimensional,

we have no choice where to put the non-trivial loop on the torus. Because,

there is only one non-trivial closed control loop, and it already fills the en-

tire control space (just like indicated in the left of Figure 2); and as there is

only one minimum per unit cell, it completely determines the corresponding

action loop due to the adiabatic condition. Also in the general case there is

a subset of the product space where loops can pass through; this subset is

the stationary sub-manifold for our particles [4, p. 5050]. In Figure 2 the

loop covers the whole stationary sub-manifold, but in general the stationary

sub-manifold can be bigger than the loop [4, pp. 5052, 5054, 5057].

So if we, as in Figure 3, now plot the loop (or the sub-manifold) on this

torus, we see that winding once around in 𝒞 we necessarily also loop around

once in 𝒜. This is a visualization of the fact that one cycle of the control

parameter (e. g. one magnetic moment rotation, walking step or swimming

stroke – see later) is coupled to a displacement.

For future reference, we introduce two more terms: The action fence is

4Or approaches, in experiment.
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Figure 3: Representation of topological transport in the product space 𝒞×𝒜.
Left: Construction of the product space as cartesian product of the control

space 𝒞 and the action space 𝒜. The gray or green color represents the

position in 𝒜, the lightness stands for the control parameter in 𝒞. Right:

Taking into account the periodic boundary conditions for control parameter

and action space position, opposite edges of the product space rectangle can

be joined to a torus. A plot of the loop in product space (white/gray/black

line), here equal to the stationary sub-manifold for our particles, makes vis-

ible how one cycle of the control parameter is coupled to a displacement in

action space. Figure strongly inspired from Figure 3b in [4, p. 5049].
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the set of all points in action space that are stationary while the control

loop is crossing the control fence. Finally, the set of pairs of corresponding

control fence points and action fence points – living in the holes of 𝒞 × 𝒜 –

is called just fence ℱ.
We can now rephrase the fact stated above – the fact that if transport oc-

curs, the sub-manifold also winds around action space when it winds around

control space. With our new terms, this is equivalent to saying: If non-trivial

transport occurs, the loop winds around a fence. The inverse statement is

also true, which we will look into in Section 3.3. These properties charac-

terize the described transport process to be topological [4, p. 5067].

3 Zeroth order, or: how to move

3.1 Shaping and orienting agile bipeds

The main goal of this work was producing colloidal agile bipeds – rods like

already shown in Figure 1c, but more nimble than in the previous projects

thanks to an independent control of their foothold and their orientation.5

As we will see shortly, the former is caused by the (local) substrate–particle

interaction whereas the latter arises from the (nonlocal6) particle–particle

interaction. The possibility to adress both independently will provide us with

more options to control the movement of colloidal assemblies.

The decoupling of foothold and orientation is achieved by making the

external field a superposition of a low-frequency field 𝐇LF(𝑡) and a high-

frequency field 𝐇HF(𝑡),

𝐇ext(𝑡) = 𝐇LF(𝑡) + 𝐇HF(𝑡) (2)

= 𝐇̃LF(𝑡) + 𝐇̃HF(𝑡) cos(𝜔HF𝑡) (3)

where the directions of both amplitudes 𝐇̃LF(𝑡) and 𝐇̃HF(𝑡) are modulated

adiabatically. This means their directions are changed periodically with a

period 𝑇 = 20 s, which is much longer than the oscillation period 𝑇HF =
2𝜋
𝜔HF

=
0.1 s of the high-frequency field𝐇HF(𝑡). Also, the low-frequency amplitude is

chosen significantly weaker than the high-frequency field amplitude, 𝐻̃LF =
0.3𝐻̃HF. With these properties,

• the high-frequency field𝐇HF(𝑡) = 𝐇̃HF(𝑡) cos(𝜔HF𝑡) is oscillating too fast
for the colloid displacement to follow the oscillation, and

5On an abstract level, “coupling” here means something similar as in the previous sec-
tion: The change of one quantity implies the change of the other. In the previous section
this was the case (between control parameter and displacement), here it isn’t (between
foothold and orientation).

6Strictly, this interaction only appears nonlocal in our description of the system.
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• the low-frequency field𝐇LF(𝑡) = 𝐇̃LF(𝑡) is so weak that the high-frequen-
cy field is dominating over it.

Before justifying these assumptions let’s look what they imply: The strong

high-frequency field dominates the magnetic particle–particle interactions

bymagnetizing the particles and inducing dipolar attractions between them.

The oscillation does not matter in this case because at any time the particles

are all magnetized in the same direction. Therefore the particles form rods

– our bipeds from Figure 1c – the direction of which is locked to that of the

high-frequency field amplitude 𝐇̃HF(𝑡).
Although the high-frequency field dominates the particle magnetization,

due to its oscillation it does not contribute to the time-averaged magneti-

zation. That quantitiy is then completely determined by the low-frequency

field; the direction of the time-averaged magnetization and magnetic mo-

ment is locked to that of the low-frequency field 𝐇LF(𝑡).7 We also elaborate

on the time averaging later, but already from now we only consider the time-

averaged magnetic moment and refer to it just as the magnetic moment.

We describe this as sketched in Figure 4: Each of the field 𝐇LF(𝑡) and the

amplitude 𝐇̃HF(𝑡) lives in its own control space – the low-frequency control

space 𝒞LF or the high-frequency control space 𝒞HF, respectively (top left and
top right).

The high-frequency field amplitude controls the biped orientation: For a

biped consisting of 𝑛 single particles each with diameter 𝑑, the biped vector

𝐛𝑛, pointing from one end of the biped to the other (center of Figure 4), is

always parallel to the vector 𝐇̃HF. The length 𝑏𝑛 ∶= 𝑛𝑑 of the biped vector

equals the actual length of the rod. In this way, for a rod of given length,

the vector 𝐇̃HF can be transcribed into a vector 𝐛𝑛 in the vector space of

all possible biped vectors 𝐛. We call this vectorspace the high-frequency

transcription space 𝒯HF (bottom right). This 𝐛𝑛 vector dictates the biped

orientation (center).

In an analogous manner, the biped magnetic moment 𝐦𝑛 ∶= 𝑛𝑉𝜒eff𝐇LF is

locked parallel to the low-frequency field while its modulus is proportional

to the rod length (center). Thus also 𝐇̃LF can be transcribed into a vector𝐦𝑛
in the vector space of all possible biped magnetic moments 𝐦. Let’s name

this vector space the low-frequency transcription space 𝒯LF (bottom left).

The 𝐦𝑛 vector dictates the biped magnetic moment (center).

In the next two sections, we will deepen our understanding of the relation

between control, transcription and action spaces by theoretically looking at

particular examples how to make agile bipeds move.

7We won’t talk about the low-frequency amplitude 𝐇̃LF any more, as it just equals 𝐇LF.
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Figure 4: Relations between control spaces, transcription spaces and ac-

tion space. The low-frequendcy magnetic field 𝐇LF and the high-frequency

magnetic field amplitude 𝐇̃HF, living in the low- and high-frequency con-

trol spaces 𝒞LF and 𝒞HF, can be transcribed into the magnetic moments 𝐦
and the biped vectors 𝐛 of the agile bipeds. These are elements of the low-

frequency and high-frequency transcription spaces 𝒯LF and 𝒯HF; their mod-

uli are proportional to the biped length. These vectors are dictated to the

bipeds in the action space 𝒜. So in total, the control of the biped orientation
and adherence can be seen as a composition of transcription and diktat.
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3.2 Simulations: sliding and walking

As a reminder: The high-frequency field amplitude 𝐇̃HF controls the biped

orientation and the low-frequency field 𝐇LF the magnetic moment. The di-

rection of each𝐇LF(𝑡) and 𝐇̃HF(𝑡) can be changed independently, while keep-
ing the moduli constant.

The effects of these modulations are illustrated with simulation results

from the Brownian dynamics software developed by Adrian Ernst [2]. The

simulation parameters were chosen corresponding to the experimental pa-

rameters as given in Section 3.4, while the biped orientation was locked

to the ̃𝐇HF direction by constraint. Figures 5 and 6 show the simulated

results, that is, the effects of separately modulating one of 𝐇LF and 𝐇̃HF

while keeping the other one fixed. Snapshots of these vectors (red and

blue arrows) are shown in first column, where they draw their control loops

(white/gray/black lines) in their control spaces (transparent gray spheres).8

The second column contains snapshots of a simulated 3-particle biped in ac-

tion space, and in the third and fourth column we see the𝐦3 (red arrow) and
𝐛3 (blue arrow) vectors in their transcription spaces. Also, here not only the

vectors but also the control loops are transcribed to the transcription spaces

(white/green/black lines).

Let us focus on Figure 5 first. There the biped magnetic moment is mod-

ulated by adiabatically rotating 𝐇LF counter-clockwise. At the same time,

𝐇̃HF and thus the biped orientation is kept fixed and parallel to the stripes of

the pattern. We see that, in this situation, the biped lays flat on the ground

along the stripes and transversally slides; its foothold on the substrate is

modulated. After completion of the loop, it has moved one lattice constant

to the left.

In Figure 6, the biped orientation is modulated by driving a control loop

with 𝐇̃HF. Now 𝐇LF is kept fixed, namely upwards perpendicular to the

pattern. Now we see the biped walk: Its grounded end, or grounded foot,

always seems to be fixed on the substrate, more precisely on a gray stripe.

But at two times (here 𝑡 = 0.25𝑇 and 0.75𝑇) the biped switches its grounded

foot. At the first time it also gains foothold on a different stripe, and it stays

there afterwards. In this way, after completion of the loop the biped has

moved one lattice constant to the right.

3.3 Rolling wheel rule

In the simulations just shown the sliding loop was driven counter-clockwise

and moved the biped to the left, while the walking loop ran clockwise and

induced transport to the right. This is the same behavior which a wheel

rolling on the ground shows: When it is rotating (counter-)clockwise, it rolls

8As we now take into account all three 𝑥, 𝑦 and 𝑧 directions the control spaces are spheres
(in Figure 4 they were circles as we were only considering the 𝑥 and 𝑧 directions).
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Figure 5: Brownian dynamics simulation results of a biped sliding

due to direction modulation of the low-frequency field𝐇LF. The snap-

shots are taken from Video 1 (accesible via the QR code) in intervals

of 0.25𝑇, where 𝑇 = 20 s is the period of the adiabatic modulation of the am-

plitude. The columns (from left to right) show the control spaces, the action

space, the low-frequency and the high-frequency transcription space.
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Figure 6: Brownian dynamics simulation results of a biped walk-

ing due to direction modulation of the high-frequency field amplitude

𝐇̃HF. The snapshots are taken from Video 2 (accesible via the QR

code) in intervals of 0.25𝑇, where 𝑇 = 20 s is the period of the adiabatic mod-

ulation of the amplitude (not the period of the high-frequency oscillation).

The columns show the same spaces as in Figure 5.
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to the right (left). This is the rolling wheel rule, as discovered in my group

and formulated in [1, p. 6].

For the walking motion of bipeds the reason for its validity is the same:

Both the lowest point of a wheel and the footpoint of the biped are fixed to

the ground so that only the upper part can move (see Figure 7, right part).

For the sliding motion of the colloidal particles the reason is a bit different.

We can understand the motion by recognizing that the particle magnetic

energy is minimal at the places where its magnetic moment is parallel to

the pattern field 𝐇p. As the magnetic moment is itself aligned with the low-

frequency field 𝐇LF, adiabatic rotation of the latter leads to transport. The

direction is determined by the shape of the pattern field (Figure 7, left part).9

Please keep in mind that for the above argument just given and illustrated

in the left part of Figure 7 we have made no assumption about the modulus

of 𝐇HF. We can therefore conclude that here adiabatic non-trivial transport

indeed always occurs when the control loop winds around the hinge of the

red arrow. This is the justification why the low-frequency control fence looks

as in Figure 2.

I hope it has become intuitively clear by now how the sliding and walking

motion are supposed to work. To justify the thoughts theoretically, and to be

able to quantitatively predict the effect of arbitrary control loops, we need

to derive expressions for the potential and the fence. This is what we do in

the next two sections.

3.4 Calculation of the potential

We describe our system as the magnetic pattern, generating a stationary,

space-dependent magnetic field 𝐇p, on which 𝑁 of our paramagnetic parti-

cles are placed arbitrarily. In addition, the homogeneous, time-dependent

external magnetic field 𝐇ext is applied.

As the system is overdamped, its time evolution in the adiabatic case is

determined by a potential

𝑈(𝐑) = 𝑈sp(𝐑) + 𝑈pp(𝐑). (4)

Here 𝐑 = (𝐫1,… , 𝐫𝑁) is the 3𝑁-dimensional vector of all 𝑁 particle positions;

𝑈sp is the energy by the magnetic substrate–particle interactions and 𝑈pp is

the energy from the magnetic particle–particle interactions.

We first look at the substrate-particle interaction energy: Each single par-

ticle (diameter 𝑑 = 2.8µm, volume 𝑉 = 4𝜋
3
(𝑑
2
)
3
, effective magnetic suscepti-

bility 𝜒eff = 0.6) is magnetized by the total magnetic field 𝐇 = 𝐇p+𝐇ext, and

9As a side note: If we imagine the field lines of 𝐇p above the pattern, they are curved
towards the ground – just as the top half of a rolling wheel. This can be seen as a deeper
reason why the rolling wheel rule is applicable to the sliding motion.
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Figure 7: Transport directions induced by low-frequency and high-

frequency control loops. Left: Single particles have their potential minimum

at the places where the pattern field𝐇p is parallel to their magnetic moment,

which is itself parallel to the low-frequency field 𝐇LF. Thus a full clockwise

adiabatic rotation of 𝐇LF transports the particle one lattice constant to the

right (snapshots from top to bottom). The same principle applies for assem-

blies of particles. Right: Bipeds rotate synchronously with the adiabatically

driven high-frequency field amplitude 𝐇̃HF. As already seen in Figure 6, the

grounded foot stays roughly fixed but can be switched. Also here, a clock-

wise rotation of 𝐇̃HF induces transport to the right.

20



so gets a magnetic moment 𝐦 = 𝑉𝜒eff𝐇. Therefore in the total field it has

the magnetic energy 𝑈𝑖 = −𝜇0𝐦 ⋅ 𝐇 = −𝜇0𝑉𝜒eff𝐇2.
In the scalar product we can now abandon (“gauge away”) the spatially

constant 𝐇2
ext term, and neglect the 𝐇2

p term because 𝐻p ≈ 5Am−1 is much

smaller than 𝐻ext = 4 kAm−1 [4, p. 5046].10 So 𝑈𝑖 ≈ −2𝜇0𝑉𝜒eff𝐇p ⋅𝐇ext(𝑡) and
the total particle–substrate interaction energy 𝑈sp = ∑𝑁

𝑖=1𝑈𝑖 reads

𝑈sp(𝐑(𝑡)) = −2𝜇0𝑉𝜒eff

𝑁

∑
𝑖=1

𝐇p(𝐫𝑖(𝑡)) ⋅ 𝐇ext(𝑡). (5)

Let us now consider the time averaging. In our overdamped system the

magnetic force is always compensated by the friction, so the equation of

motion for a single particle, not interacting with other particles, reads

6𝜋𝜂𝑑2 ̇𝐫𝑖(𝑡) = 𝜇0𝜒eff𝑉∇ (2𝐇p ⋅ 𝐇ext(𝑡)) , (6)

or in the frequency domain,

6𝜋𝜂𝑑2 ⋅ (−i𝜔)𝐫𝑖(𝜔) = 𝜇0𝜒eff𝑉∇ (2𝐇p ⋅ 𝐇ext(𝜔)) . (7)

To find the characteristic angular frequency 𝜔c above which the particles

stop being able to follow, let’s demand |𝐫𝑖(𝜔c)|
!
= 𝑑. This means upon oscilla-

tion the particle is being displaced by its own diameter. Then the strength

of the friction is ||6𝜋𝜂
𝑑
2
⋅ (−i𝜔c)𝐫𝑖|| = 3𝜋𝜂𝑑2𝜔c. On the other hand, for the mag-

netic force we estimate ||𝜇0𝜒eff𝑉∇ (2𝐇p ⋅ 𝐇ext)|| ≈ 𝜇0𝜒eff
4𝜋
3
(𝑑
2
)
3
⋅ 1
𝑎
2𝐻p𝐻ext =

𝜋
3
𝑑
𝑎
𝜇0𝜒eff𝑑2𝐻p𝐻ext. Setting these equal, we get the condition

Mn ∶=
𝜂𝜔c

𝜇0𝜒eff𝐻p𝐻ext

!
= 𝑑
9𝑎 ≈ 0.04. (8)

The number Mn is called Mason number [6, p. 1669].11 Plugging in all pa-

rameters as given above and solving for the characteristic angular frequency

yields 𝜔c ≈ 0.6 s−1. This result confirms the experimental observation that

the particles can follow the adiabatic field modulation with 𝜔 = 2𝜋
𝑇
= 2𝜋

20 s
≈

10The modulus of the stripe pattern field on top of the polymer film (see Section 2) is

𝐻(0)
p = 𝑀s

2𝜋
𝑎
𝑒 ⋅ exp(− 2𝜋

𝑎
ℎ) ≈ 5Am−1. Here 𝑀s = 6.5 kAm−1 is the effective saturation

magnetization of the magnetic pattern, 𝑒 = 3.5nm its thickness or extension, 𝑎 = 7µm
the lattice constant and ℎ = 1.6µm the height of the polymer film [4, pp. 5055, 5073].

11The Mason number is proportional to the viscous/magnetic force ratio. As the former
scales with the surface and the latter with the volume, for a biped of length 𝑏 the Mason

number must be multiplied by a factor ( 𝑏
𝑑/2

)
3/2

[6, p. 1669].

21



0.3 s−1 but not the high-frequency oscillation with 𝜔 = 𝜔HF = 2𝜋 ⋅ 10Hz ≈
60 s−1.
Therefore instead of the fully time-resolved potential 𝑈(𝐑(𝑡)) we can de-

scribe the motion of the particle with the potential ⟨𝑈(𝐑(𝑡))⟩ averaged over

a timescale
2𝜋
6 s−1

≈ 1 s. In the experiments 𝐇LF(𝑡) and 𝐇̃HF(𝑡) are not chang-

ing significantly at the timescale over which we average, so they can be

pulled out of the ⟨angular brackets⟩. From this follows ⟨𝐇̃HF(𝑡) cos(𝜔HF𝑡)⟩ =
𝐇̃HF(𝑡)⟨cos(𝜔HF𝑡)⟩ = 0, and so the time-averaged substrate–particle interac-

tion potential is given by

⟨𝑈sp(𝑡)⟩ = −2𝜇0𝑉𝜒eff

𝑁

∑
𝑖=1
⟨𝐇p(𝐫𝑖) ⋅ 𝐇ext(𝑡)⟩ = −2𝜇0𝑉𝜒eff

𝑁

∑
𝑖=1

𝐇p(𝐫𝑖) ⋅ 𝐇LF(𝑡). (9)

This expression doesn’t contain 𝐇̃HF, reflecting the fact that the high-frequency

field causes no average magnetization of the particles on the considered

timescale.

The overall particle–particle interaction potential is the sum of all pair’s

dipolar interaction energies, 𝑈pp = ∑(𝑖,𝑗)𝑈𝑖𝑗, with

⟨𝑈𝑖𝑗(𝐑(𝑡))⟩ = −
𝜇0
4𝜋

3 ̂𝐫𝑖𝑗 ̂𝐫𝑖𝑗 − 1

𝑟3𝑖𝑗
𝑉2𝜒2eff ⋅⋅ ⟨𝐇ext(𝑡)𝐇ext(𝑡)⟩ (10)

≈ −
𝜇0
4𝜋

3 ̂𝐫𝑖𝑗 ̂𝐫𝑖𝑗 − 1

𝑟3𝑖𝑗
𝑉2𝜒2eff ⋅⋅

1
2𝐇̃HF(𝑡)𝐇̃HF(𝑡), (11)

where 𝐫𝑖𝑗 = 𝐫𝑗 − 𝐫𝑖 is the vector between the two particles. The 𝐇LF𝐇LF term

is neglected because its norm is much smaller than that of 𝐇̃HF𝐇̃HF (by a

factor 0.32 = 0.09 in the present experiments). The factor
1
2
is the value of

the ⟨cos(𝜔HF𝑡) cos(𝜔HF𝑡)⟩ term.

In the following calculation of the fence we will only consider a single par-

ticle or biped and not take into account division or merging events, because

in the experiments they happen less frequently than the walking or sliding

steps. This means the time-averaged dipolar particle–particle interaction

potential ⟨𝑈𝑖𝑗(𝐑(𝑡))⟩ is constant and we just use the substrate–particle inter-

action potential from Equation (9). The particle–particle interaction is then

accounted for by assuming that the bipeds are rigid and aligned along 𝐇̃HF.
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3.5 Theory: Control fence for the stripe pattern

3.5.1 Result and heuristical argument

In the simulation we have already seen a sliding motion (by keeping fixed

the high-frequency field amplitude, 𝐇̃HF, and therefore also the rod direc-

tion) and a walking motion (by keeping the adiabatic low-frequency field𝐇LF

fixed, and with it the biped magnetic moment).

A quantitative understanding of these processes is delivered by the fence

which we will calculate in the next section. In fact, we will do this not in the

control spaces but directly in the transcription spaces 𝒯LF and 𝒯HF. An ad-

vantage of them over the control spaces is that they allow to simultaneously

represent the behavior of rods with different lengths.

Before, we will already look at the results and make them plausible.12

My theory presented in the next section predicts that bipeds with any fixed

direction slide with the same velocity as its constituent particles would, if

they were separated. This is plausible because a modulation of the low-

frequency field just shifts the potential and so all particles of the assembly

are transported in the same way. Therefore the low-frequency control fence

looks the same as for single particles, i. e. as in Figure 2 on page 10, but

extended in 𝑦 direction. This is depicted in Figure 8.

On the other hand, the calculation will show that the fence in the high-

frequency transcription space 𝒯HF consists of straight lines in 𝑦 direction at

non-zero multiples of the lattice constant 𝑎, see Figure 9. This is plausible

too: A biped can step one stripe further if it (more precisely: its projection

on the 𝑥 axis) is more than one lattice constant long. If it is shorter, it slides

backwhile it switches foot because it can’t overcome the potential maximum

with its lifted end (see Figure 10, top left). Then it won’t reach the next

stripe with the other foot. On the other hand, if it is longer, it slides forward

and steps on the next stripe (Figure 10, bottom left). The distinction in the

high-frequency transcription space is that in the second case the transcribed

control loop cuts the 𝑏𝑧 = 0 plane on the right of the line 𝑏𝑥 = 𝑎, whereas
in the first case it cuts it on its left.13 This holds for any fixed orientation of

the low-frequency field, because changing it will just shift the position of the

minima. An analogous argument applies for steps of more lattice constants,

which makes plausible that the high-frequency control fence looks like in

Figure 9.

Having seen the results we now look into the calculation of the fence.

12In fact, the calculation was done first and the heuristic arguments were formulated after-
wards.

13This might not be obvious to you if you are thinking about bipeds for the first time. In this
case I suggest you to visualize for yourself how each of the two bipeds moves in 𝒜, and
how each of its 𝐛 vectors moves in 𝒯HF. For this purpose e. g. two pencils of different
lengths can be helpful.
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Figure 8: Low-frequency control fence (red line) in the low-frequency tran-

scription space 𝒯LF, as calculated in Section 3.5.2. Here 𝑚𝑥,𝑦,𝑧 are the 𝑥, 𝑦
and 𝑧 components of the biped magnetic moment 𝐦, and 𝑚𝑎 ∶=

𝑚𝑛
𝑏𝑛
𝑎 is the

magnetic moment of a biped with length 𝑎 (the lattice constant of the stripe
pattern).
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Figure 9: High-frequency control fence (blue lines) in the high-frequency

transcription space 𝒯HF, as calculated in Section 3.5.2. Here 𝑏𝑥,𝑦,𝑧 are the

𝑥, 𝑦 and 𝑧 components of the biped vector 𝐛, and 𝑎 is the lattice constant of

the stripe pattern.
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Figure 10: Visualizations for fence determination. Left: Heuristical expla-

nation for high-frequency fence. While stepping down with the lifted foot,

the rod slides to the left or the right. Which direction it is determines the

standpoint after switching foot and depends of the length: The biped slides

into the nearest stationary, symmetric position of minimal energy (see Fig-

ure 7). Right: Definition of quantities for the fence calculation. The vectors

𝐫1,…,4 give the single particles’ positions, 𝐫0 ∶= (𝑥0, 𝑦0, 𝑧0) is the center po-

sition of the rod. The vector 𝐛 is the previously introduced biped vector, 𝑏𝑥
and 𝑏𝑧 are its 𝑥 and 𝑧 components.

3.5.2 Derivation

Analogously to Section 2.2, the transcribed control fence is the transcription

space region where extrema of the potential 𝑈 in action space disappear.

Thus the conditions for each control fence point are that it

1. renders at least one action space point stationary but

2. non-extremal,

which necessarily means
𝜕𝑈

𝜕 (2𝜋
𝑎
𝑥0)

!
= 0 (12)

and
𝜕2𝑈

𝜕 (2𝜋
𝑎
𝑥0)

2
!
= 0. (13)

These conditions will allow us to calculate the fence. We start with writing

out an expression for 𝑈, using the coordinates as depicted in the right of

Figure 10.

The leading Fourier components of themagnetostatic potential of the stripe

pattern just give a cosine function, and the pattern magnetic field 𝐇p at po-
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sition 𝐫 = (𝑥, 𝑦, 𝑧) equals [4, p. 5048]

𝐇p(𝐫) = 𝐻(0)
p (

sin (2𝜋
𝑎
𝑥)

0
cos (2𝜋

𝑎
𝑥)
) e−

2𝜋
𝑎 𝑧

(14)

with 𝐻(0)
p the modululs of the pattern field at the substrate surface 𝑧 = 0.

As announced before, we assume the considered particles are already as-

sembled to one biped and stay so for all times. So the particle–particle in-

teraction potential is constant in time, and the potential of the biped, using

Equation (9), is given by

𝑈 = −2𝜇0𝑉𝜒eff

𝑁

∑
𝑖=1

𝐇p(𝐫𝑖) ⋅ 𝐇LF (15)

≈ −2𝜇0𝑉𝜒eff𝐇LF ⋅ ∫
𝑏/2

−𝑏/2

d𝑏′
𝑑 𝐇p(𝐫0 + 𝐛′) (16)

= −
2𝜇0𝑑
𝑏 𝐦 ⋅∫

𝑏/2

−𝑏/2

d𝑏′
𝑑 𝐇p(𝐫0 + 𝐛′). (17)

Here, the vectors 𝐫1,…,𝑛 give the single particles’ positions (see Figure 10)

and 𝐫0 ∶= (𝑥0, 𝑦0, 𝑧0) ∶=
1
𝑛
∑𝑛

𝑖=1 𝐫𝑖 is the center position of the rod. As before,

𝑑 is the diameter of a single colloidal particle, and 𝐦 = 𝑏
𝑑
𝑉𝜒eff𝐇LF is the

biped magnetic moment. Plugging in Equation (14), we get

𝑈 = −2𝜇0𝐻
(0)
p (

𝑚𝑥
𝑚𝑦
𝑚𝑧

) ⋅ ∫
𝑏/2

−𝑏/2

d𝑏′
𝑏 (

sin (2𝜋
𝑎
(𝑥0 + 𝑏′𝑥))
0

cos (2𝜋
𝑎
(𝑥0 + 𝑏′𝑥))

) e−
2𝜋
𝑎 (𝑧0+𝑏′𝑧) (18)

with 𝑏′𝑥,𝑧 ∶= 𝑏′ 𝑏𝑥,𝑧
𝑏
. Here, 𝑏 is the length of the biped and 𝑏𝑥,𝑧 are its 𝑥 and

𝑧 projections (see Figure 10); 𝑏′ parametrizes the position along the biped

axis, and analogously 𝑏′𝑥,𝑧 are its 𝑥 and 𝑧 projections.
Rewriting the scalar product (𝛼, 𝛽) ⋅ (𝛾, 𝛿) = 𝛼𝛾 + 𝛽𝛿 = Re((𝛼 − i𝛽)(𝛾 + i𝛿))

this can equally be expressed as
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𝑈
2𝜇0𝐻

(0)
p

= −Re ((𝑚𝑧 − i𝑚𝑥) ⋅ ∫
𝑏/2

−𝑏/2

d𝑏′
𝑏 e

i
2𝜋
𝑎 (𝑥0+𝑏′𝑥+i𝑧0+i𝑏′𝑧)) (19)

= −Re ((𝑚𝑧 − i𝑚𝑥) ⋅ e
i
2𝜋
𝑎 (𝑥0+i𝑧0)∫

𝑏/2

−𝑏/2

d𝑏′
𝑏 e

i
2𝜋
𝑎 (𝑏′𝑥+i𝑏′𝑧)) (20)

= −Re ((𝑚𝑧 − i𝑚𝑥) ⋅ e
i
2𝜋
𝑎 (𝑥0+i

𝑏𝑧
2 )∫

𝑏/2

−𝑏/2

d𝑏′
𝑏 e

(i 2𝜋𝑎
𝑏𝑥+i𝑏𝑧

𝑏 )𝑏′) (21)

= −Re((𝑚𝑧 − i𝑚𝑥) ⋅ e
i
2𝜋
𝑎 (𝑥0+i

𝑏𝑧
2 ) [1𝑏

e
(i 2𝜋𝑎

𝑏𝑥+i𝑏𝑧
𝑏 )𝑏′

(i2𝜋
𝑎

𝑏𝑥+i𝑏𝑧
𝑏

)
]

𝑏/2

−𝑏/2

) (22)

= −Re((𝑚𝑧 − i𝑚𝑥) ⋅ e
i
2𝜋
𝑎 (𝑥0+i

𝑏𝑧
2 ) ⋅

2 sin (2𝜋
𝑎
(𝑏𝑥
2
+ i

𝑏𝑧
2
))

2 ⋅ 2𝜋
𝑎
(𝑏𝑥
2
+ i

𝑏𝑧
2
)

) (23)

= −Re ( (𝑚𝑧 − i𝑚𝑥) ⋅ e
i
2𝜋
𝑎 (𝑥0+i

𝑏𝑧
2 ) ⋅ si (2𝜋𝑎 (𝑏𝑥

2
+ i

𝑏𝑧
2
)) ) , (24)

which we abbreviate as −Re( 𝐴 𝐵 𝐶 ). Here si𝑥 ∶= sin𝑥
𝑥
. We now take into

account that
𝜕𝐴

𝜕(
2𝜋
𝑎
𝑥0)

= 𝜕𝐶

𝜕(
2𝜋
𝑎
𝑥0)

= 0 and 𝜕𝐵

𝜕(
2𝜋
𝑎
𝑥0)

= i 𝐵 . Then the fence equa-

tions (12) and (13) can be expressed as

0
!
= Re(i 𝐴 𝐵 𝐶 )

!
= Re(i2 𝐴 𝐵 𝐶 ), (25)

which is equivalent to the condition 𝐴 𝐵 𝐶
!
= 0. As 𝐵 ≠ 0, Equation (25) is

fulfilled if and only if

0
!
= 𝐴 = 𝑚𝑧 − i𝑚𝑥 (26)

or

0
!
= 𝐶 = si (2𝜋𝑎 (

𝑏𝑥
2 + i

𝑏𝑧
2 )) . (27)

The zeros of the si function are 𝑚𝜋,𝑚 ∈ ℤ ⧵ {0} and so the control fence

transcribed in 𝒯 ∶= 𝒯LF × 𝒯HF reads

ℱ𝒯 ∶= {(0,𝑚𝑦, 0, 𝑏𝑥, 𝑏𝑦, 𝑏𝑧) |𝑚𝑦, 𝑏𝑥, 𝑏𝑦, 𝑏𝑧 ∈ ℝ}
∪ {(𝑚𝑥, 𝑚𝑦, 𝑚𝑧, 𝑚𝑎, 𝑏𝑦, 0) |𝑏𝑦, 𝐻𝑥, 𝐻𝑦, 𝐻𝑧 ∈ ℝ,𝑚 ∈ ℤ ⧵ {0}} . (28)

This is exactly the control fence depicted in Figures 8 and 9. The control

fence parts in 𝒯LF and 𝒯HF are independent of each other; the sliding and

walking motions are decoupled, and we can consider the two transcription

spaces separately.
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3.6 Experiments: Investigation of the transport modes

3.6.1 Sliding and walking: design of control loops

As the fence equations for the stripe pattern decouple to independent equa-

tions for the low- and high-frequency fields, the fence components are or-

thogonal to each other and induce different transportmodes. Winding around

a low-frequency fence (in 𝒯LF) with fixed biped vector (in 𝒯HF) leaves the

orientation of the rod invariant and leads to the mentioned sliding motion.

Winding around a high-frequency fence (in 𝒯HF) with fixed biped magnetic

moment (in 𝒯LF) leaves the single-particle potential landscape invariant and

causes the walking motion. As the calculation has shown that there are no

more fence components, we can conclude there are also no more transport

modes; each topologically non-trivial adiabatic transport in this system can

be written as a composition of a sliding and a walking motion. In order to

probe the predictions from simulation and theory, it has hence suggested

itself to start the experiments trying to realize these two transport modes

separately.

Figures 11 and 12 show the applied control loops after transcription in the

low- and high-frequency transcription spaces. While the colors represent

different rod lengths from red (𝑏1) to magenta (𝑏8), the change in lightness,

as in Section 2.3, indicates the changing control parameter.

3.6.2 Sliding and walking: results

Sliding Figure 11 shows the transcribed low-frequency control loops ap-

plied in the sliding experiments; the high-frequency field was left at fixed

direction parallel to the stripes, as in the simulation from Figure 5. The low-

frequency loops by design just wind around the single red fence line. This

means that the theory predicts all rods should slide one lattice constant per

loop, independently of their length. As the loops are driven counterclock-

wise, the rollig wheel rule tells us that the rods will be sliding to the left.

The experiments confirm this prediction. One characteristic result for

the sliding motion is depicted in Figure 13, which is based on Video 3: All

rods indeed slide to the left with a speed of one lattice constant per loop,

independent of their length. The figure shows the particles as well as their

trajectories within a time interval of 2𝑇 = 40 s (visible thanks to a digitally

made “long exposure” effect).

Their equal speed becomes evident from Figure 14: It shows a “long-

exposure photo from the comoving frame of reference”. I. e., a projection of

the entire14 video along the 𝑥+𝑎𝑡/𝑇 axis, parallel to which the spacetime tra-

jectories (“world lines”) of the rods are claimed to be. That the rods almost

14However only with frames stroboscopically captured in discrete time intervals 𝑇. In this
way, in each frame the external field is the same.
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Figure 11: Control loops in the low-frequency transcription space 𝒯LF. The

coordinate system is the same as in Figure 8, but is omitted here for bet-

ter visibility of the loops. The different radii and colors represent different

rod lengths from 𝑏1 (red) to 𝑏8 (magenta), the changing lightness indicates

the control parameter. The loop was driven in counter-clockwise direction.

For any rod length, it winds around the fence once and thus is predicted to

induce a sliding motion by one lattice constant to the left. For the experi-

mental results, see Figures 13 and 14.
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Figure 12: Control loops in the high-frequency transcription space𝒯HF. The

coordinate system is the same as in Figure 9, but is omitted here for better

visibility of the loops. The different radii and colors represent different rod

lengths from 𝑏1 (red) to 𝑏8 (magenta), the changing lightness indicates the

control parameter. The loop was driven clockwise. For lengths 𝑏1 and 𝑏2,
the loop winds around no fence segment and is thus predicted to induce

no transport. The 𝑏3 and 𝑏4 loops wind around one segment and therefore

should make those bipeds walk one lattice constant, 𝑏5 should walk one or

two (not clear from theory as the loop cuts the fence), 𝑏6 and 𝑏7 two, and 𝑏8
three. For the experimental results, see Figures 15 and 16.
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Figure 13: Typical experimental result for the sliding motion. The

figure consists of the overlayed frames in the first 3 s of Video 3 (ac-

cessible via the QR code). In this time, the low-frequency control

loop from Figure 11 is driven three times while the high-frequency field

keeps the bipeds oriented along the stripes. As predicted, all single parti-

cles and bipeds slide to the left with a speed of one latice constant per loop,

independent of their length. This becomes more evident from Figure 14.
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aren’t smeared out here shows that they are indeed moving with velocity

−𝑎
𝑇
in 𝑥 direction.

Figure 14: Projection of Video 3, showing that all rods slide with equal

speed. Technically, this figure is an overlay of video frames stroboscopically

captured at times 𝑡𝑖 = 𝑡0 + 𝑖𝑇, 𝑖 ∈ {1,… , 14} with 𝑇 the loop duration. Each

frame is shifted to the right with respect to the preceeding one by one lattice

constant 𝑎.

Walking Now, for the walking experiments, the magnetic moments 𝐦𝑛
were kept constant and pointing upwards perpendicular to the pattern, as in

the simulation from Figure 6. The applied high-frequency control loops are

visible in Figure 12. As opposed to the sliding experiments, here different

transcribed control loops wind around different numbers of fence segments,

which means theory predicts bipeds to walk with different speeds depend-

ing on their length. In particular, bipeds of lengths 𝑏1 and 𝑏2 are predicted

not to walk forward, 𝑏3,4 should walk one lattice constant per loop, 𝑏5 one or
two lattice constants (not clear as loop cuts fence), 𝑏6,7 two lattice constants
and 𝑏8 three lattice constants. The direction will be to the right according

to the rolling wheel rule.

Figure 15 shows a corresponding experiment, based on Video 4. In the

video we can see a single biped walking to the right. On its way there are

single particles that don’t move forward but are incorporated by the biped,

which becomes longer in this way and moves with increasing step size and

speed. We can also observe in the video that the rod always steps on the

gray stripes, like in the simulation. In the Figure, an overlay analogous to

Figure 13, these details are hard to recognize but we can at least see that

the biped is moving to the right, in agreement with the rolling wheel rule,

and that the single particles don’t move.

33



Figure 15: Typical experimental result for the walking motion. The

figure consists of the overlayed frames in the first 5 s of Video 4 (ac-

cessible via the QR code). In this time, the low-frequency control

loop from Figure 12 is driven five times while the low-frequency field is

fixed pointing upwards. As predicted, single particles don’t move forward

and the biped moves to the right. More details are visible in the video and

in Figure 16.

Again, a second graphics quantifies the observations: Figure16 shows pro-

jections of the video of the walking motion along 𝑦 (bottom) and along 𝑡 di-
rection (top). In the lower part, we see the moving rods as lines colored

according to their length. Each vertex where two lines join corresponds to

a joining event of two rods, or, in this case, a rod and a single particle. The

kinks in the lines arise on the dark (gray) stripes because each rod always

has one foot there; additionally, as they show the 𝑇-periodicity, they allow

us to read the step size of each rod and confirm that (in the absence of join-

ing events) 𝑏3,4 walk one, 𝑏5,6,7 two and 𝑏8 three lattice constants per step.

In particular, the 𝑏5 biped seems to behave as if the fence segment cut by

the loop lied inside the loop. These movements are in agreement with the

theoretical prediction.
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Figure 16: Projections of Video 4 along the 𝑦 (top) and the 𝑡 axis (bottom).

The bottom part shows the different walking speeds of rods with different

lengths. For easier visualization, the lower part of this figure contains all

frames whereas the upper part only consists of stroboscopically captured

frames as in Figure 14.
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3.6.3 Treadmill and dancing

Instead of keeping one of the fields fixed, it is also possible to modulate

both field directions. So I have combined a walking and a sliding motion

with opposite transport directions (see Figure 17 and Video 5): While all

assemblies slide to the left at one lattice constant per loop, the walking

speed to the left monotonically increases with the rod length. So rods of

lengths 𝑏1,2 slide to the left, those with lengths 𝑏3,4 walk in place (like humans

running on a treadmill or on an escalator in the wrong direction) and longer

ones walk to the right.

Figure 17: Typical experimental result for the treadmill motion. The

figure consists of the overlayed frames from 𝑡 = 12.4 s to 15.4 s of

Video 5 (accessible via the QR code). In this time, the low-frequency

control loop from Figure 11 is driven three times counter-clockwise while

the high-frequency control loop from Figure 12 is driven three times clock-

wise. In agreement with the theory, single particles and bipeds of length 𝑏2
slide to the left (e. g. ① and ②), bipeds 𝑏3,4 walk in place (e. g. ③ and ④) and

longer ones walk to the right (e. g. ⑤).

For the sliding motion, many more variations are possible; Figure 18 and

Video 6 show three of them. A first possibility is to let bipeds slide with differ-

ent fixed orientations, which we describe by the polar and azimuthal angles

Θ and Φ in spherical coordinates. In the left part of Figure 18 and Video 6

we see an experiment where the bipeds are lying flat and longitudinally to

the sliding direction (Θ = 90°, Φ = 0°). In the middle part of Figure 18 and

Video 6, they have an out-of-plane orientation (Θ = 40°, Φ = 12°) and slide

to the right, as the sliding loop in Figure 11 is driven clockwise. Finally,

another way of combing two modulations is shown in the right part of Fig-

ure 18 and Video 6: All bipeds are sliding to the left while rotating around

one of their ends (like humans dancing on a carnival float). In contrast with

the treadmill motion, here the orientation modulation does not cause any

movement as the high-frequency control loop winds around no fence.
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All these – partly dancing-like – movements are possible because the slid-

ing motion works independently of the biped orientation. Conversely, theory

predicts that also the walking motion should work independently of the low-

frequency field orientation: For any fixed orientation of 𝐇̃LF, the rods should

walk with the same speed. The difference should just be whether the rods

step on gray stripes, green stripes or gray–green edges. This remains to

be tried in future experiments, and there is also room for other agile biped

movements which we haven’t observed until now.

Figure 18 (see page 38): Sliding experiments with different biped

orientations. In all cases the low-frequency loop from Figure 11

with period 𝑇 = 20 s was used, but each time with a different high-

frequency loop. (a) Sliding while keeping the high-frequency field and thus

the rod orientation parallel to the sliding direction (Θ = 90°, Φ = 0°). (b) Slid-
ing with fixed out-of-plane high-frequency field and rod orientation (Θ = 40°,
Φ = 12°). Here the rods slide to the right because the loop was driven clock-

wise. (c) Sliding with simultaneous in-plane rotation of the rods (Θ ≈ 90°, Φ
changing with constant angular velocity

2𝜋
𝑇
). The figures are overlays of the

frames from the first 2 s of Video 6.
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4 First order, or: how to break and glue

4.1 Experimental result: dividing bipeds

On our way to achieve agile particle movement, so far we have – controlling

the foothold on the substrate and the orientation of agile bipes – been able

to reproduce a sliding and a walking motion and combinations of them. A

third possible way of moving is moving by shape changes, which has not

occured in the experiments shown up to this point.

However, as visible for example in Figure 16, often the assembly of shorter

bipeds to longer ones is observed. On the contrary, the inverse process –

division of longer bipeds into shorter ones – practically never happens in

experiments. This can be explained with the high binding energy of the

particles due to the high-frequency field, as described by equation (11) on

page 22.

In order to make the division of bipeds into bipeds possible, and so gain

greater control over the actual shape of our assemblies, we (that is, Anna

Rossi and me) used a different pattern which should act like an ax and break

bipeds into two parts.

The pattern, developed and used in Anna’s PhD [7], is visible in Figure 19:

It consists of a square pattern which is locally deformed around a boat-

shaped region in the center [8, p. 4]. This region is cloaked for single par-

ticles because they, if moving from the bottom left to the top right in the

picture (or vice versa), don’t enter the boat but move around it.15 At the

cusps of the cloaked region, indicated by the white spots in Figure 19, in-

coming particles will either go to the left or to the right.

What we then did is let a rod slide with its long side hitting such a cusp in

order use the cloaked region as blade of the ax, splitting the incoming biped

into two parts. We used a sliding loop as in Section 3.6.2.16

In this experiment we were indeed able to observe rod divisions, as the

example in the inset of Figure 19 shows. Like other division events it hap-

pened near, but not exactly at the cusp of the blade. We explain this by a

local increase of the magnetic energy of the assembly, caused by the de-

formed pattern under it.

15Thereby their trajectories are deformed compared to the ones on a standard square pattern
only around the cloak, so that far away from the cloak they coincide with the original
trajectories.

16This works because the square pattern is a superposition of two orthogonal stripe patterns
with a potential of the form 𝑈4(𝑥, 𝑦) = 𝑈2(𝑥) + 𝑈2(𝑦), and 𝑈2(𝑥) equal to the stripe
pattern potential (24). Therefore the square pattern fence is a superposition of two copies
of the stripe pattern fence, rotated with respect to each other around the 𝑧 axis by

𝜋
2
.
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Figure 19: Division experiment, based on Video 7 (accessible via

QR code). Here the particles are placed on a square pattern with a

boat-shaped cloaked region, as developed and used in [7]. The bipeds

were driven by a sliding loop with 𝑇 = 10 s while their orientation was kept

fixed transverse to the sliding direction. The cloaked region has two cusps;

their approximate positions are drawn as white spots (manually added to

the picture). The inset shows a rod division near one of the cusps of the

cloaked region.
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4.2 Lessons from the parameter studies

Unlike the walking and sliding motion, the division is not an adiabatic pro-

cess, which explains why we found that experimental parameters have a

big influence on whether this process works or not, and that also random-

ness plays a role here. On the way to the above result we have therefore

studied the influence of the parameters, which provided us with a deeper

understanding of the dynamical behavior of our system. I will summarize

our results here, also as a reference for future experiments.

To be able to divide in a controlled manner, the bipeds have to hit the blade

with a point close to their center (otherwise they will just go around it. This

means they should be

1. sufficiently long, thin and straight, which requires a sufficiently strong

particle–particle attraction, i. e. a low
𝐻LF

𝐻̃HF

ratio;

2. sufficiently fragile and sensitive to the pattern, which requires a suffi-

ciently weak particle–particle and a high particle–substrate interaction,

i. e. a high
𝐻LF

𝐻̃HF

ratio.

It is hence not guaranteed that there is a suitable
𝐻LF

𝐻̃HF

ratio fulfilling both

conditions, and indeed it was challenging to observe such a splitting event.

In our attempts to there we have studied the influence of numerous param-

eters such as

• the lattice constant (smaller lattice constants leads to longer rods),

• the cloak size (bipeds tend to cross smaller cloaks, and to get caught

at the cusps of bigger cloaks),

• the high-frequency modulation function, replacing cos(𝜔HF𝑡) in Equa-

tion (3) on page 13 (a rectangular function sign(cos(𝜔HF𝑡)) makes the

particle–particle attraction (11) twice as strong) and

• the exact loop path (a smaller/larger control loop in 𝒞LF leads to weaker/
stronger forces and propulsion).

Also the cloak shape (boat or ellipse) affects the bipeds’ tendency to cross

the cloak or get caught.

What in the end led to the successful experiment from Figure 19 and

Video 7 was periodically switching between two loops – sliding and stretch-

ing – each fulfilling just one of the above conditions: While driving the slid-

ing loop, the
𝐻LF

𝐻̃HF

ratio was risen to 0.6 to facilitate the breaking of the

bipeds. This had the drawback that with the time the bipeds deformed to

non-rod-shaped clusters. Therefore, after each two sliding loops, we drove
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one stretching loop with keeping both 𝐇LF and 𝐇̃HF fixed at their current

orientations, but decreasing their ratio to 0.1. This small pause helped the

corrupted bipeds to recover into their elongated shape.

4.3 Outlook: joining bipeds

In the course of the experiments Thomas, Anna and me arrived expecting

that the process of joining two bipeds together in a controlled manner might

be achievable more easily than splitting them. Because, it doesn’t require

the fragility of the bipeds. Just two bipeds must be placed at opposite sides

of the cloak such that they will meet, and join, at some later point. Nonthe-

less, for this to work, the particle–substrate interaction must still be strong

enough for both rods to be transported over the pattern reliably, and not

miss out any step (which would bring them out of synchronization). Pre-

experiments suggest that the joining will work once this issue is solved, so

this direction seems worth taking.
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5 Higher orders, or: how to change

We have seen that already shape changes of rods are challenging to con-

trol, so it is probably even more challenging for non-rod-shaped colloidal

assemblies. These would however be particulary interesting because they

can presumably perform more complex shape changes. A possible solution

is to investigate the effect of these shape changes in a statistical manner.

Non-rod-shaped assemblies were also created in this work, however by

inducing isotropical instead of directed attraction between the particles. To

this end, no oscillating but a rotating high-frequency field was used. This

means we have applied the external field

𝐇ext(𝑡) = 𝐇LF(𝑡) + 𝐻̃HF(𝐱̂ cos(𝜔HF𝑡) + 𝐲̂ sin(𝜔HF𝑡)), (29)

here with
𝐻LF

𝐻̃HF

= 0.2, 𝜔HF = 2𝜋 ⋅ 20Hz and 𝐱̂ and 𝐲̂ the unit vectors in 𝑥 and 𝑦
direction. A result is shown in Figure 20 and Video 8.

We see the single particles are re-assembling at specific times or values

of the control parameter. This results to shape changes of the assembly,

which here seem to lead to a forward displacement. The forward displace-

ment is recognizable by the fact the assembly moves faster than the single

particles (otherwise it would not be able to hunt and eat them). We call this

transport mode swimming, even though it is not clear at this point whether

hydrodynamic effects play a role here.

Shape changes were generally observed. However they were not con-

trollable and did not always lead to a forward displacement, but also to

backward or no displacement. So the aim of a future project will be find-

ing a control parameter which, via transcription to the shape, is coupled

to the displacement of the assembly – perhaps similar as described by Al-

fred Shapere and Frank Wilczek, who have also related shape changes and

swimming motion to a loop in an abstract space [9, p. 558]. This will most

probably be the starting point of the continuation of the present Master’s

project.
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Figure 20: Swimming experiment. The Figure shows snapshots

from the initial part of Video 8 (accessible via QR code), taken at

intervals of a quarter-period
1
4
𝑇 with 𝑇 = 20 s. For comparison, the

last snapshot is overlayed with a shadow of the first. The low-frequency

loop was the sliding loop from Figure 11; the high-frequency field was not

oscillating as in the other experiments but rotating in-plane with frequency

20Hz. One can see single particles as well as a non-rod-shaped cluster, all

moving to the left. Within each period the clustered particles detach and re-

assemble, which leads to a deformation and propulsion of the assembly. The

latter is recognizable at the fact that the cluster moves faster than the sin-

gle particles, allowing it to incorporate one and to catch up with the others.

The depicted event was chosen intentionally to illustrate the effect; shape

changes of clusters occured in general but their precise course seemed ar-

bitrary.
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6 Discussion and outlook

In this Master thesis I have, building upon previous works by Mahla, Anna

and Adrian, investigated ways to control shape and motion of paramagnetic

colloidal assemblies on a ferromagnetic pattern. I used simulation, theory

and experiment. The new aspect I introduced was replacing the former

strong adiabatically modulated external magnetic field by a superposition

of a strong high-frequency magnetic field and a weak low-frequency mag-

netic field. My experiments have shown that the former then completely

determines the magnetic dipolar particle–particle interaction whereas the

latter is solely responsible for the substrate–particle interaction. My calcu-

lation of the fence in the high- and low-frequency transcription spaces then

has shown this leads to a decoupling of two modes of topological transport

– walking and sliding. This description could in principle be applicable to

other walking- or sliding-like motions on periodicly patterned substrates, as

of humans on stairs, ladders or escalators.

The motion of these agile bipeds being exhausted completely, together

with Anna I have moved on to real shape changes – trying to divide or join

bipeds in a controlled manner with a cloaking pattern. These experiments

have worked partially and taught us a lot about the non-adiabatic behavior

of the system: First, the binding is quite irreversible, and so biped joining

can probably be achieved more easily than dividing. Second, randomness

plays a big role here and so it seems statistical methods need to be applied.

Both mentioned points contain opportunities for future experiments. Ex-

hausting the randomness was already part of some late Master thesis exper-

iments of mine, where I used a non-oscillating but rotating high-frequency

field to build different non-rod-shaped assemblies. Upon sliding, they per-

formed periodic random shape changes that were correlated to propulsion.

Phenomena like this are known from swimmers at low Reynolds numbers

which are also given here. In addition, still the particles and assemblies

are moving in a discrete environment which simplifies the theoretical de-

scription enough to (hopefully) find a relation between magnetic field, shape

change and motion.

This will probably the starting point for my continuation of this project in

the PhD. I enjoyed this Master’s project very much, and I’m happy having

worked with a system accessible by all simulation, theory and experiment

– the results of which finally converged and contributed to a deeper under-

standing.
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