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Kurzzusammenfassung/Abstract III

Kurzzusammenfassung

Es werden die Strukturbildung und Benetzung zweidimensionaler (2D)

Phasen von Langmuir-Monolagen im lokalen thermodynamischen Gleich-

gewicht untersucht. Eine Langmuir-Monolage ist ein isoliertes 2D Sys-

tem von Surfaktanten an der Wasser/Luft-Grenzfläche, in dem kristalline,

flüssigkristalline, flüssige oder gasförmige Phasen auftreten, die sich in Po-

sitionsordnung und/oder Orientierungsordnung unterscheiden. Permanente

elektrische Dipolmomente der Surfaktanten führen zu einer langreichweiti-

gen repulsiven Selbstwechselwirkung der Monolage und zur Bildung mesos-

kopischer Strukturen. Es wird ein Wechselwirkungsmodell verwendet, das

die Strukturbildung als Wechselspiel kurzreichweitiger Anziehung (nackte Li-

nienspannung) und langreichweitiger Abstoßung (Oberflächenpotential) auf

einer Skala ∆ beschreibt. Physikalisch trennt ∆ die beiden Längenskalen

der lang- und kurzreichweitigen Wechselwirkung. In dieser Arbeit wer-

den die thermodynamischen Stabilitätsbedingungen für die Form einer

Phasengrenzlinie (Young-Laplace-Gleichung) und Dreiphasenkontaktpunkt

(Young-Bedingung) hergeleitet und zur Beschreibung experimenteller Daten

genutzt: Die Linienspannung benetzender 2D Tropfen wird mit Hilfe

hängender-Tropfen-Tensiometrie gemessen. Die Blasenform und -größe von

2D Schäumen wird theoretisch modelliert und mit experimentellen 2D

Schäumen verglichen. Kontaktwinkel werden durch die Anpassung von

experimentellen Tropfen mit numerischen Lösungen der Young-Laplace-

Gleichung auf Mikrometerskalen gemessen. Das Skalenverhalten des Kon-

taktwinkels ermöglicht die Bestimmung einer unteren Schranke von ∆. Wei-

terhin wird diskutiert, inwieweit das Schalten von 2D Benetzungsmodi in

biologischen Membranen zur Steuerung der Reaktionskinetik ein Rolle spie-

len könnte. Hierzu werden Experimente aus unserer Gruppe, die in einer

Langmuir-Monolage durchgeführt wurden, herangezogen.

Abschließend wird die scheinbare Verletzung der Gibbs’schen Phasenregel

in Langmuir-Monolagen (nicht-horizontales Plateau der Oberflächendruck-

Fläche Isotherme, ausgedehntes Dreiphasengebiet in Einkomponentensys-

temen) quantitativ untersucht. Eine Verschmutzung der verwendeten

Substanzen ist demnach die wahscheinlichste Erklärung, während Finite-

Size-Effekte oder der Einfluss der langreichweitigen Elektrostatik die

Größenordnung des Effektes nicht beschreiben können.
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Abstract

The present work investigates the structure formation and wetting in two

dimensional (2D) Langmuir monolayer phases in local thermodynamic equi-

librium. A Langmuir monolayer is an isolated 2D system of surfactants at

the air/water interface. It exhibits crystalline, liquid crystalline, liquid and

gaseous phases differing in positional and/or orientational order. Permanent

electric dipole moments of the surfactants lead to a long range repulsive in-

teraction and to the formation of mesoscopic patterns. An interaction model

is used describing the structure formation as a competition between short

range attraction (bare line tension) and long range repulsion (surface poten-

tials) on a scale ∆. ∆ has the meaning of a dividing length between the

short and long range interaction. In the present work the thermodynamic

equilibrium conditions for the shape of two phase boundary lines (Young-

Laplace equation) and three phase intersection points (Young’s condition)

are derived and applied to describe experimental data: The line tension is

measured by pendant droplet tensiometry. The bubble shape and size of 2D

foams is calculated numerically and compared to experimental foams. Con-

tact angles are measured by fitting numerical solutions of the Young-Laplace

equation on micron scale. The scaling behaviour of the contact angle allows

to measure a lower limit for ∆. Further it is discussed, whether in biological

membranes wetting transitions are a way in order to control reaction kinetics.

Studies performed in our group are discussed with respect to this question

in the framework of the above mentioned theory.

Finally the apparent violation of Gibbs’ phase rule in Langmuir monolayers

(non-horizontal plateau of the surface pressure/area-isotherm, extended three

phase coexistence region in one component systems) is investigated quantita-

tively. It has been found that the most probable explanation are impurities

within the system whereas finite size effects or the influence of the long range

electrostatics can not explain the order of magnitude of the effect.
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α (αi) molecular area (of phase i)

∆ (∆i) scale parameter (of phase i)
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F (Fel, Fλ, F0) free energy (dipole contribution, line contribution, 2D bulk contribution)
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pel electrostatic pressure

Φ (Φi) area fraction (of phase i)

φ angle
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π surface pressure
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r (rij, rij(s)) position vector in 2D (pointing to interface ij, shape of interface ij)

S entropy
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θ contact angle
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ξ correlation length

ξi (ξij) molecular bulk energy (latent heat of phase transition from phase i to j)
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〈Q〉 expectation value of Q

Q̃ corresponding dimensionless quantity to Q

Q∗ corresponding renormalized quantity to Q

Q̃∗ corresponding renormalized dimensionless quantity to Q

Qr physical (’real’) value of Q



Chapter 1

Introduction

Surfactants are molecules with a hydrophilic head group and a hydrophobic chain (figure

1.0.1). According to their amphiphilic nature they favour the formation of mono molecular

layers on the air/water interface. Depending on the solubility one distinguishes between Gibbs

monolayers and Langmuir monolayers. Gibbs monolayers are formed by soluble surfactants.

The monolayer is in equilibrium with molecules in solution. Insoluble surfactants form Lang-

muir monolayers - isolated quasi 2D systems on the air/water interface. In general the length

of the hydrophobic chain determines the solubility of the molecule in water, the longer the

chain the less soluble the molecule.

The molecules show several degrees of freedom and various phases differing in rotational,

translational or positional order occur. One observes gases, liquids or crystals according to

translational order or tilted and untilted phases according to the rotational order of the chain.

Langmuir monolayers are an excellent system to study complex thermodynamic behaviour

Figure 1.0.1: typical surfactants are a) fatty acid, b) methyl ester, c)-e) phospholipids, c)

diacylphosphatidylethanolamine, e) diacylphasphatidylcholine. f) schematic sketch: all sur-

factants consist of a hydrophilic head (soluble in water) and a hydrophobic chain (not soluble

in water)

1



2

with relatively simple experimental devices. The variables of state: area A, surface pressure

π or temperature T are easily accessible by measurement and can be controlled. Structures

can be monitored by imaging techniques. Langmuir monolayers are an ideal model system

for several biological problems. For instance for lung surfactants which lower the surface

tension within the lung and make breathing possible. Or for biological membranes - bilayers

of amphiphilic lipids exhibiting complex structures and functions. From the physical point

of view Langmuir monolayers give the opportunity to study thermodynamics in the presence

of long range interactions. Since the dipole moments of the molecules are not screened at

the air/water interface long range interaction influences the phase behaviour and causes the

formation of self assembling patterns. By the Langmuir-Blodgett technique monolayers can be

transferred on a solid substrate and one can create well defined materials on molecular scale.

In the present work the effect of the dipole interaction is studied with respect to the phase

behaviour, stability size and shape of two dimensional (2D) foams and especially to the wetting

behaviour of 2D phases. Controlling the wetting behaviour is an essential task in technology,

for instance for the design of lubricants or dyes, the design of self assembling patterns or

microfluidic systems (the lab on a chip). A special field of wetting research focuses on long

range interaction wetting, a feature for which Langmuir monolayers are well suited.

The present work will be ordered as follows: In chapter 2 an overview of experimental tech-

niques used for monolayer research is presented and the experimental setup used for the

experiments is presented here. Chapter 3 gives a description of the common theoretical model

based on a competition between short range attraction and long range repulsion and important

conclusions are presented. Then chapter 4 derives the thermodynamic equilibrium conditions

for the shape of phase interfaces and applies those to experimentally observed monolayer pat-

terns. On the one hand these conditions are used to describe the drying of 2D long range

interaction foams (section 5). On the other hand they are used to study features of 2D long

range interaction wetting in chapters 6 and 7. Chapter 8 deals with possible explanations for

an apparent violation of Gibbs’ phase rule in monolayers.



Chapter 2

Experimental setup

2.1 Experimental techniques for Langmuir monolayers

Most experiments on Langmuir monolayers are performed in a Langmuir trough. A sketch

of the principle design is shown in figure 2.1.1. The trough is made of hydrophobic material

(teflon) and usually equipped with movable hydrophobic barriers. With the barriers the total

area accessible to the surfactant molecules on the surface can be varied. The presence of

amphiphiles on the interfaces generally decreases the surface tension. The difference of the

surface tension with surfactant σ to the surface tension of a pure subphase σ0 is called the

surface pressure π := σ0 − σ (unit mN/m). It has the dimension of a 2D pressure (energy

per area) or 2D elasticity. Analog to 3D pressure-volume isotherms in Langmuir monolayers

π−A isotherms can be measured. Like in 3D, discontinuities in the isotherms indicate phase

transitions. The surface tension is determined by measuring the force caused by the surface on

a completely wetted plate (Wilhelmy - plate). This can be done by a balance (’film-balance’)

or by an electronic force sensor. Usually the trough is equipped with some external thermostat

in order to control the temperature.

Figure 2.1.1: schematic sketch of a) Langmuir trough with Wilhelmy-sensor for surface-

pressure-measurement and moveable barrier b) Pendant droplet technique. The surface tension

(and surface pressure) can be evaluated out of the droplet shape.

3
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The Langmuir trough can also be used for Langmuir-Blodgett technique [1]. By dipping a

solid plate into the trough the monolayer is transferred layer by layer onto the solid substrate.

The surface pressure is kept constant during this procedure and the loss of material on the air

water interface is compensated by moving the barriers.

Another method of measuring the surface tension makes use of the dependence of the shape

of pendant droplets in gravitational field on the surface tension and droplet volume (pendant

droplet tensiometry) [2]. The pendant drop device allows to vary the volume of pendant (or

sessile) droplets and with the volume also the surface area accessible to the surfactant. The

surface tension can be calculated by analysis of the droplet shape, which has to be recorded

by a camera. The advantage of this technique is the small total volume of subphase and

a fast relaxation of the droplet shape. This setup is interesting especially for studying the

adsorption dynamics of soluble surfactants. A disadvantage of the latter technique arises due

to the difficulty to add additional imaging technique for the investigation of the monolayer

pattern itself.

Since the 80’s imaging techniques were developed enabling the observation of the monolayer

structure. (Normal optical microscopy fails because the monolayer is too thin to be observed

directly.) Lösche et al. [3] and McConnell et al. [4] labelled the amphiphiles with a fluorescent

dye (nitrobenz-oxa-diacole (NBD) and Texas-red respectively) and observed the monolayer

through a filter for the fluorescence light by a normal optical microscope. The monolayer

has to be illuminated by light of a certain frequency νEX (see figure 2.1.2), usually lasers or

mercury lamps (only narrow bands in the spectra) are used as light sources. The obtained

Figure 2.1.2: Exciting light with the energy hνEX is adsorbed and lifts an electron from energy

level S0 to S ′
1 (step 1). By radiation less processes, as impacts, the electron looses some energy

and reaches energy level S1 (step 2). Then the electron goes back to S0 emitting light with

the energy hνEM < hνEX.
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Figure 2.1.3: a) Image of methyl octadecanoate monolayer using polarized fluorescence mi-

croscopy. The matrix phase is liquid condensed phase (inhomogeneous in brightness because

of unisotropy), with circular enclosures containing gaseous phase (dark, homogeneous) and

liquid expanded phase (bright, homogeneous). b) BAM image of tilted phase in octade-

canol monolayer. The regions of different brightness correspond to different directions of the

molecule tails. Regions with low monolayer concentration reflect completely polarized light

(black star) [7].

microscopy image corresponds to the distribution of the label in the monolayer. In general

gaseous phases appear dark because of fluorescence quenching and the low density of molecules.

2D liquids appear bright. Because the labelled molecules differ in shape compared to the

unlabelled molecules they are seldom built into an ordered lattice. This is the reason why in the

fluorescence image ordered 2D phases occur less bright than the 2D liquids, but often brighter

than gas phases. If polarized exciting light is used, only dye molecules within a certain angle are

excited. With this technique (polarized fluorescence microscopy) tilt angles can be visualized

by slight variations in the brightness. Condensed phases can be better distinguished from

gaseous phases because of their inner structure (see figure 2.1.3). So fluorescence microscopy

is easy to handle and allows to distinguish phases differing in orientational and positional order

as well as in rotational order to some extent. The maximum resolution is limited by the wave

length of the fluorescence light (< 1 µm). One disadvantage of this technique is the always

present fluorescence label which acts in the system as trace impurity and might influence the

thermodynamic behaviour.

A common technique in order to study anisotropic properties of monolayers is the Brewster

angle microscopy (BAM). This method was introduced by Hönig and Möbius [5] and Hénon

and Meunier [6] and does not need any dye. A laser beam hits the surface in the Brewster

angle and completely polarized light is reflected. The presence of monolayer influences the po-

larization of the reflected beam. Using a microscope images of the monolayer can be obtained.

This technique is very useful in order to distinguish tilted and untilted phases. Phases without

any rotational order, however, cannot be distinguished in the BAM image. The resolution is

limited by the tilt of the local phase with respect to the air/water interface.

Other common techniques for the determination of the molecular structure in monolayers are



6

Figure 2.2.1: left: fluorescence microscope. 1 - Langmuir trough; 2 - microscope; 3 - SIT

camera head; 4 - optics for fluorescence laser; 5 - Multimeter for temperature measurement; 6

- optics of IR-laser behind the microscope

middle: Langmuir trough. 7 - moveable barriers; 8 - Wilhelmy sensor; 9 - objective; 10 -

temperature sensor

right: schematic principle of apparatus

electron microscopy [8], X-ray diffraction [9] or IR-spectroscopy [10]. Langmuir-Blodgett films

can be further analyzed for instance using atomic force microscopy (AFM) [11].

2.2 Langmuir-trough

The trough for the experiments presented here was designed by Lautz and built by the author

together with Steffen (figure 2.2.1). The walls and barriers are made of solid teflon and the

bottom is covered with a teflon foil. The area can be varied by two symmetrical movable

barriers between 211 and 58 cm2 leaving the center of the film in rest. The barriers are moved

by stepper motors (model: C-842) from PI. The motors are controlled via a PC card. The

software is described in Appendix A.11. The area between the barriers is obtained by counting

the steps of the motors, so it is not a direct measurement and demands calibration from time

to time. The measurement error of the area does not exceed 1%. Vibrations are suppressed

by a NFT vibration isolation system.

The surface pressure π is measured by Wilhelmy sensors working with an optical feedback

circuit. One of the sensors was designed and manufactured by Kohlstrunk (university of

Leipzig), later also a sensor of ’Riegler and Kirstein’ working on the same principle was used.

The time for the feedback circuit to reach is final value (tuning time) is about 30 s. Then

the error of the measurement is about 1 mN/m. The measured pressure has been digitized

by an AD transformer card (ADA 16-2) or by a multimeter (Metex-22, Digitek DT-4000ZC)

connected to the PC via the RS232 interface.

The temperature can be controlled by Peltier-elements attached to the bottom of the trough.

An electrical potential applied to Peltier-elements leads to a temperature difference on the two

sides of the element. This feature can be used for heating and cooling dependent on the sign
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of the applied potential. The Peltier-elements are manually controlled by laboratory power

supply (EA-4021) and use the cooling circuit of the institute as heat reservoir with a defined

temperature. The advantage of using this setup compared to the common external thermostat

is that temperature changes can be performed very fast. Unfortunately the temperature

distribution within the trough is not homogeneous and large temperature differences compared

to the environment lead to convectional flow of the subphase.

The temperature is measured by an electronics assembly designed by Kohlstrunk using Pt100

elements and the AD transformer card or by a multimeter with RS232 interface and temper-

ature measure function.

2.3 Fluorescence microscope combined with

optical tweezers

The trough is combined with a fluorescence microscope built up by Lautz. An air cooled

Argon laser from Optlectra (488 nm) with a power up to 150 mW is used as excitation light

source. The monolayer is illuminated at an angle of 45◦, polarized fluorescence microscopy can

be performed in order to distinguish tilted and untilted phases. In the middle of the trough

the objective faces the air/water interface from below. The choice of the sight direction has

the advantage that objectives with a high numerical aperture can be used. Unfortunately

then the objective is fixed and cannot be moved in order to investigate monolayer patterns.

Using the optics of an inverted optical microscope (Zeiss, model: Axiovert 135) and a filter

for the fluorescence light the monolayer is observed with a secondary ion tube (SIT) camera

(Hamamatsu, model: C2400) directly connected to a commercial video tape recorder and TV-

screen, on which the monolayer can be monitored instantaneously. The measured physical

quantities pressure, temperature and area are plugged in with a Genlock adapter (VineGeN

2) from the computer screen and videotaped together with the monolayer images.

Additionally, an Y-YAG laser (from Jenoptik) is plugged in the optics of the microscope. This

IR-laser has a power of up to 2 W and is focused on the air water interface. It can be used

for local heating of the monolayer or - at lower power - in order to capture small silica beads

within the focus and allow controlled mechanical manipulation of the monolayer patterns [12].

The laser then functions as optical tweezers [13]. Because the objective faces the surface from

below the laser beam does not heat up the bottom and effects caused by heat convection

are reasonably small. In order to compensate the fixed objective and allow some control of

the observed region of the monolayer a device has been built confining a small region of the

monolayer by a glass tube and move it using an XY-table (Lstep-12) (figure 2.3.1).

The XY-table can be controlled manually turning the positioning wheels or using a controlling
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Figure 2.3.1: XY table. The monolayer is fixed by the glass tube (1, right figure). the glass

tube can be moved by turning the wheels (2).

electronics assembly with a joystick. The glass tube has been silanized as described in [14].

One obtains a contact angle between water and the glass close to 90◦. The air/water interface

confined in the glass tube is flat in the focus of the microscope. The device allows a less

efficient control compared to movable objectives facing from above. If the monolayer is quite

dense and rigid a reasonable control is obtained. However, the nearby glass interface might

have non-negligible effects on the pattern formation. This makes this device useful only for

some special applications.



Chapter 3

Interactions in monolayers

This chapter deals with the interactions between monolayer surfactants considered in the

common theories.

3.1 Long range electrostatic repulsion

Each molecule on the air water interface carries a dipole moment p because of its polar head

group and mirror charges within the water [15] and the CH3 group also carrying a dipole

moment. Unlike in the bulk phase the component perpendicular to the surface pz is not

screened by the polar water. This results in an electrostatic repulsion between any monolayer

molecules 1 and 2 in distance r with the interaction energy

Fdipole 1,2 =
1

4πε

pz,1pz,2

|r|3
, (3.1.1)

where ε is the permittivity. The interaction leads to a repulsive force between distinct mono-

layer domains and between different parts of one domain (self interaction). It can be observed

in experiments like the one shown in figure 3.1.1 b) [16], where small circular liquid expanded

(LE) domains immersed in gaseous phase (G) form a depletion layer close to a liquid condensed

(LC) wall because of dipolar repulsion.

If the monolayer phases are assumed to be phases in the sense of Gibbs, i.e. homogeneous

with sharp interfaces, then to each phase i belongs a particular dipole density 〈pz〉i/αi with

the average dipole moment per molecule 〈pz〉i and the average molecular area αi. In order to

calculate the total dipolar energy of the monolayer a simple lattice model can be taken into

account [17]. In this model the molecules are assumed to be placed on the lattice sides of a

regular quadratic lattice with the lattice constant ∆latt.,i. Each molecule carries the average

dipole moment of the corresponding phase. Then the total dipole energy of the monolayer is

obtained by the summation over all possible pair interactions between all the molecules of the

9
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monolayer N

Flattice =
N∑

k=1

N∑
l=k+1

Fdipole k,l (3.1.2)

=
1

4πε

N∑
k=1

N∑
l=k+1

〈pz〉i〈pz〉j
r3

kl

, (3.1.3)

where the molecule k belongs to phase i and the molecule l belongs to phase j (If k and l belong

to the same phase, i equals j). If the lattice constant ∆latt.,i, or rather the molecular area

αi = ∆2
latt.,i is small compared to the extension of the phases the sum can be approximated

by a continuous distribution

Fdipole ≈
1

4πε

∑
i,j

1

2

〈pz〉i
αi

〈pz〉j
αj

∫
Ai

∫
Aj

dAdA′√
(r− r′)2 + ∆2

latt.,i

3 , (3.1.4)

where the summation is done over all monolayer phases i and j and the integration is performed

over the area of the individual phases. The lattice constant ∆latt., i (in the range of some Å)

becomes important if the interacting area elements come very close to each other. This is the

case mostly in the 2D bulk (i=j) seldom on the interface between two different phases. Then

∆latt., i prevents the integral (3.1.4) from diverging. Note that the ∆latt. carries the length

scale in the integral expression of the dipolar energy - with the physical meaning of the cut-off

length of dipolar interaction. If one assumes that also van-der-Waals interactions act as a

short range attraction between the molecules, the cut-off-length represents the length scale,

where the van-der-Waals interactions overbalance the electrostatics ( ∆vdW in the range of

some nm). In most systems the cut-off-length is not known. Since equilibrium shapes can

be described using any sufficient1 small ∆ it is not easily accessible by measurements. This

1to be defined in section 4.3

Figure 3.1.1: a) Sketch. The dipole moment of the surfactants leads to a repulsive force between

monolayer domains and between different region of one domain b) Fluorescence image of

methyl octadecanoate monolayer in the three phase coexistence region of bright LE, dark G

and grey LC. Due to electrostatic repulsion the small LE domains form a depletion layer of

thickness D close to the LC wall [16].
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property will be derived in section 4.3 and can be formulated as a shape invariant scaling

transformation, transforming the interaction parameters leaving shapes invariant. The ∆ in

equation (3.1.4) will be denoted as ’scaling parameter’ in general, while ’cut-off-length’ stands

for the physical length on which short range interactions overbalance the dipole interaction.

For ferrofluids, which share the same free energy as Langmuir monolayers, ∆ is interpreted as

the film thickness of the ferrofluid.

The common theory takes into account only one ∆ for all the phases instead of one ∆i for

each. This amplification is justified due to the freedom of choice of the scaling parameter.

However, in the limits of validity of the shape invariant scale transformation this simplification

has to be discussed again.

The permittivity in (3.1.2) and (3.1.4) ε = ε0εr is expected to have a value between the

permittivity of air (εr = εair = 1) and water (εr = εwater = 80) [18, 19].ε0 = 8.854 pN/V2

is the vacuum permittivity. A simple model for the monolayer is a series connection of two

symmetrical capacitors one in air and one in water. The dipole density
pz,i

∆2
latt.

is proportional

to the surface potential Vi:

C =
1

1
Cair

+ 1
Cwater

=
Aε0

d

2εairεwater

εair + εwater

=
q

V
(3.1.5)

pz,i

∆2
latt.

= 2ε0
εairεwater

εair + εwater

Vi ≈ 2ε0Vi (3.1.6)

Further, the notation with the dipole density parameter µi and µij commonly used in the

literature will be used

µ2
i =

ε0

2π
V 2

i and µij = µi − µj. (3.1.7)

Experimental methods for the measurement of the dipole densities The classical

method of surface potential measurement is with a Kelvin probe [20–22]. The probe is a

mechanically oscillating capacitor with a periodic change of capacity, a detailed description

is given by Adamson [23]. With a Kelvin probe one measures the surface potentials on the

air-water interface on cm-scales, usually in the range of some 100 mV. The method is suitable

especially in one phase regions of the monolayer. Generally the length scale of the structures

in phase coexistence regions is much smaller than cm. Then the Kelvin probe measures the

average surface potential V̄ . If the area fractions Φi of all phases i are known - i.e. extracted

from monolayer pictures using an imaging technique - the surface potential contribution Vi of

each phase can be calculated [16,24–26]. For the calculation a lever rule is applied

V̄ =
∑

i

ΦiVi. (3.1.8)

Measuring µ̄ at different Φi leads to a set of linear equations, which can be resolved for the

unknown µi. The problem here is that the area fractions of the phases are most probably
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different in the observed region (which is heated by the fluorescence light source or BAM-

laser) compared to the unilluminated one within the Kelvin probe. The validity of the lever

rule and the independence of the individual surface potentials from e.g. the area fraction,

however, is plugged in a priori.

Other methods study the experimentally observed patterns. McConnell and Benvegnu [27,28]

studied the behaviour of a small LE-droplet confined in a G-bubble surrounded by LC. The

droplet performs Brownian motion, and out of its positional probability the interaction energy

between the droplet (with kT energy on average) and the LC-wall can be evaluated. The

disadvantage of this method is that domains performing Brownian motion are very small

(some µm2) and the measurement of the size is not very accurate. Within his diploma thesis

the author of the present work together with Wurlitzer measured the equilibrium positions

of domains in force equilibrium with the surroundings [16,26,29] and determined the ratio of

the surface potentials of the LE- and LC-phase in the three phase coexistence region. Within

the errors the results agree well with macroscopic measurements with a Kelvin probe. So the

lever rule seems to be a good approximation at least. However, some experiments also point

toward a decrease of the surface potential of smaller domains, leaving some doubt about the

lever rule. Klopfer and Vanderlick [30] reported on evidences of violation of this rule as well.

Nevertheless, the following theory will be developed assuming phases in the sense of Gibbs -

i.e. sharp boundaries and constant properties in phase coexistence. Later in chapter 8 possible

effects causing deviations will be discussed.

3.2 Line tension represents short range attraction

Similar to 3D systems the interface between the phases costs energy and it is possible to define

the line tension - the 2D equivalent to the surface tension. Taking the direct analogue from

3D one defines the effective line tension as the partial derivative of the energy with respect to

some deformation δr in an interface point r:

λeff [r(s), δr(s)] =
δF

δP

∣∣∣∣∣
A

(3.2.1)

Because of the long range dipole interaction the effective line tension as defined in (3.2.1) is

not a materials constant but depends on the shape r(s) and the mode of deformation δr(s). In

figure 3.2.1 a) a line tension driven droplet fusion is shown which points toward a positive sign

of the total energy per interface line. In figure 3.2.1 b) long range and short range interactions

are in equilibrium and result in total effective line tension equal to zero. Here structures occur

which do not minimize the length of the interface line.

So in literature [17] the bare line tension λij between the phases i and j is introduced as the
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line tension in the case of vanishing dipole interaction:

Fline =
1

2

∑
ij

λij

∫
facet ij

ds for µi = 0, (3.2.2)

where the summation is performed over all interface lines (=facets between domain i and

domain j) and the line energy is directly proportional to the length of the interface. The bare

line tension does not depend on the structure of the monolayer, it is a materials constant for

each interface type.

Stable equilibrium structures can only be explained within a positive sign of the bare line

tension. If the sign were negative the formation of new interface would always decrease the

total energy and no stationary structure could occur. So the interactions represented by the

line tension are attractive forces. The length scale of these forces is modelled by the cut-

off-length ∆, which defines the dividing length between short range interaction (represented

by the line tension) and long range interactions (represented by the dipole-dipole potential).

Note that the line tension represents some average of all the interactions within the ∆-range,

i.e. also short range contribution of the dipole interaction are included. Apparently, the value

of the line tension depends on the dividing length scale ∆. I.e. stating a value for the line

tension makes only sense with stating a scale parameter ∆ simultaneously.

Experiments for measuring line tension Unlike the macroscopic surface potentials there

exists no method measuring the bare line tension directly. It is a theoretical quantity describing

- together with the scale parameter ∆ - the strength of short range interactions. The first

evaluation of the line tension known to the author was done by Muller et al. [31, 32], who

studied the nucleation of needle shaped domains. Benvegnu and McConnell [33] applied shear

to domains and evaluated the line tension from the deformation, and Mann et al. [34] studied

the hydrodynamics of domain relaxation and determined the line tension. Another method

Figure 3.2.1: Fluorescence image in three phase coexistence of methyl octadecanoate monolayer

phases (G: black, LE: bright, LC: gray). a) Domain fusion. The bigger LE-droplets on the

left ’eats’ the smaller droplet on the right. The total length of 2D interface line is reduced

by this process, i.e. the total effective line tension has a positive sign. b) Elongated domains

occur forming a labyrinthine pattern. The total effective line tension in equilibrium is zero.
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applying mechanical forces has been published by Wurlitzer et al. [35, 36]. Wurlitzer used

optical tweezers for a local deformation of the monolayer and studied the relaxation. In an

other experiment a circular domain picked with the optical tweezers is moved and deformed

by the shear flow. An approach without the need of external forces is studying equilibrium

patterns for curvature and sizes. Rivière et al. [37] analyzed the curvature in two phase

coexistence whereas Wurlitzer et al. [38] analyzed the equilibrium size of circular domains and

evaluated the line tension. In literature it is common to calculate the line tension on Å scale

(∆ = ∆latt.). On this scale the line tension for all measured systems is in the range 0.1−10 pN.

Chapter 4 and 5 will present pendant droplet tensiometry and measurement of equilibrium

size of 2D foams as a method for the determination of the bare line tension by analysis of

equilibrium structures in more detail.

3.3 Free energy

The common model [39–44] takes the total free energy as the sum of the dipolar energy Fel,

bare line energy Fλ the 2d-bulk energy F0:

F = Fel. + Fλ + F0 (3.3.1)

with the electrostatic energy

Fel. =
∑
i,j

µiµj

2

∫
Ai

∫
Aj

dAdA′√
(r− r′)2 + ∆2

3 , (3.3.2)

and the line energy (with the perimeter Pij of the interface ij )

Fλ =
∑
{ij}

λij

Pij∫
0

dsij and F0 =
∑

i

F i
0(Ai). (3.3.3)

The bulk free energy F0 is independent of the shapes of the domains and solely depends on the

areas occupied by the individual phases. It also contains the entropy contributions, which are

proportional to the area. Entropy arising due to the arrangements of the patterns is neglected.

The shape dependent terms can be described using only the relative differences µij = µi − µj

of the surface potentials (dipole densities). This property is useful for calculations, since the

surface potential of one phase (e.g. phase 1) can be set to zero.

Sometimes it might be useful to use line integral expressions instead of the area integrals in

(3.3.2). It can be obtained by applying twice Greens’ theorem on (3.3.2) (appendix A.3).
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3.4 Mesoscopic pattern formation due to competition

between long- and short-range interaction

The bigger the line tension the more costly the interface line and consequently the larger the

structures. The bigger the surface potentials the bigger the self repulsion within a domain and

the smaller the structures. The short range and long range interaction are competing interac-

tions and the structures formed should have a well defined length scale. In 1988 McConnell

and Moy [17] calculated the equilibrium radius of an isolated domain. The free energy (3.3.1)

can be calculated for a free circular disc with radius R and is given by 2

F = πµ2
12R

2

(
π

∆
− 2

R
ln

8R

e∆

)
+ 2πλ12R + F0, (3.4.1)

where the phases of the domain and surroundings are denoted with 1 and 2. Minimizing the

free energy of N such discs with respect to R while keeping a fixed amount of phase (NR2)

yields the equilibrium area A0 √
A0 = ∆

√
πe2

8
eλ12/µ2

12 . (3.4.2)

Increasing the size of the domain beyond its equilibrium size leads to shape instabilities at a

critical size [17,27,40,41,45–47] of√
A2 = ∆

√
πe2

8
eλ12/µ2

12e7/3, (3.4.3)

which describes the instability size with respect to a two-fold deformation. A general equation

of the critical size with respect to n-fold deformation is given in [47,48]:

An = A0e
2Zn , (3.4.4)

with

Zn = 1 +
n2

3

n−2∑
k=0

1

k!

k−1∏
j=0

(1 + j)2(2− n + j)(2 + n + j)

(3/2 + j)(5/2 + j)(3 + j)
. (3.4.5)

Experiments on shape instabilities have been presented by deKoker and McConnell [40] and

Lee and McConnell [41]. Fluorescence images from the latter are shown in figure 3.4.1.

A free circular domain prefers a certain size in equilibrium and becomes unstable when exceed-

ing a critical size. This behaviour is different from 3D macroscopic systems. In 3D systems

the larger structure has always less energy per unit material than the smaller one since it has

less interface compared to the bulk. This is the reason why in 3D no specific length scale

exists.

Since in monolayers mesoscopic patterns are formed the question arises which morphology

minimizes the free energy (3.3.1) for given thermodynamic state variables, e.g. pressure π and

2in [17] is a mistake, here the corrected equation
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Figure 3.4.1: Taken from [41]. Fluorescence images of a L-α-

dimyristoylphosphatidylcholine/dihydrocholesterol binary mixture. Circular domains

perform two- and three-fold shape transitions.

area fraction of the phases Φi. For simplification two phases forming periodic structures were

assumed, and the investigation was focused on the connectivity of the phases [44, 49, 50]. In

principle three different morphologies occur. They are presented in figure 3.4.2. Kwok-On

and Vanderbilt [49,50] found the emulsion morphology minimizing the total free energy of the

monolayer up to an area fraction of domain forming phase Φ ≈ 0.28. Between 0.28 and 0.72

area fraction stripe phases minimize the total free energy. In fact there is some contradiction

to the experiments, where stripe phases are relatively rarely observed. Experiments reported

by Stine and Kretzer [51] showed a transition from a stripe phase (connectivity 0) to a 2D

foam - according to Kwok-On and Vanderbilt less stable than the inverted emulsion. A later

stability analysis of Kwok-On and Vanderbilt [50], however, supported their theory.

Recently McConnell and de Koker showed that the monolayer might be trapped within one

of infinity local energy minima [46]. The structures observed in monolayer are most probably

metastable, but in local thermodynamic equilibrium.

Figure 3.4.2: Connectivities of periodic structures. a) Emulsion. Droplets of phase 1 are

immersed in phase 2. The connectivity is 1. b) Stripe structure. The two phases form a

stripe- or labyrinthine-pattern. The connectivity is 0. c) Inverted emulsion. The connectivity

is −1.



Chapter 4

Interfaces

Two different phases meet at an interface. The present chapter deals with the thermodynam-

ical equilibrium conditions for interfaces between 2D phases. In the sense of Gibbs an ideal

interface is infinitely narrow, i.e. the properties of the bulk phases close to the interface are

not affected. In the following such Gibb’s interfaces are assumed.

4.1 Young-Laplace-equation in 3D

Sessile or pendant droplets in a gravitational field are characteristically deformed. Minimiza-

tion of the free energy of a droplet with respect to shape under constraint of constant droplet

volume yields the Euler-Lagrange equation: a condition for the shape [2, 52, 53], well known

as Young-Laplace equation containing the pressure difference between inside and outside as a

Lagrange parameter

σκ = pi − pa. (4.1.1)

The curvature κ = 1
R1

+ 1
R2

is directly proportional to the pressure difference across the

interface with the surface tension σ as coefficient.

Figure 4.1.1: Pendant water droplet in gravity field.

17
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In a gravitational field the pressure difference is the sum of the Laplace-pressure - a constant

within the whole droplet - and gravity pressure, which is a function of the height. Droplet

shapes can be evaluated by solving the Young-Laplace equation (a differential equation) for a

boundary condition on the droplet neck (figure 4.1.1).

The determination of surface tension by the evaluation of pendant or sessile droplet shapes is

a common technique (pendant droplet tensiometry).

4.2 2D Young-Laplace-equation including long range in-

teraction

Assume a monolayer structure consisting of N domains. The interfaces (facets) between the

domain i and j (i, j = 1 . . . N) are described by rij. Minimizing the total free energy (3.3.1)

while varying the shapes under constraint of constant domain area directly yields the local

stability criteria for the shape. A detailed derivation is done in the appendix (A.2).

One finds that the curvature κij(r) in r is proportional to the pressure difference across the

phase boundary with the bare line tension λij as coefficient [37,54]:

λijκij(r) = pij + pel.(r) (4.2.1)

This equation is similar to the Young-Laplace equation describing the shape of 3D droplets in

Figure 4.2.1: Sketch of a monolayer pattern. The domains I-IV are separated by the facets

IV/I, IV/II, IV/III respectively I/II. Facets are either closed loops (IV/III) or start and end

in intersection points. The curvature κ(s) is affected by the electrostatic pressure (4.2.2) from

surrounding domains. The total dipole pressure is obtained by integration of infinitesimal

dipole contributions over the domain area (example domain III) (4.2.2) or along the facets

after twice application of Greens theorem (example domain II) (using (A.3.3)).
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the gravitation field with the Laplace-pressure pij and the dipole pressure pel. instead of the

gravity pressure:

pel.(r) = −
∑

k

µijµk

∫
Ak

dA′√
(r− r′)2 + ∆2

3 (4.2.2)

Unlike in 3D the electrostatic pressure depends on the structure of the whole monolayer and

the shape of the droplet itself. Because of the electrostatic pressure LE-droplets attached on

LC-walls in gaseous surroundings are deformed to a typical pendant droplet shape (sketch in

figure 4.2.1).

4.3 Shape invariant scaling

One finds that the Young-Laplace-equation is invariant to the scale transformation [37,40,54]:

(∆1, λij,1, p1, µi,1)→ (∆2, λij,2, p2, µi,2), (4.3.1)

where λij,2 = λij,1 − µ2
ij,1 ln

∆2

∆1

,

p2 = p1 − (µ2
i,1 − µ2

j,1)

(
π

∆2

− π

∆1

)
, and

µi,2 = µi,1,

provided ∆1 and ∆2 are smaller than then the curvature radius R = 1/κij:

∆κij � 1 (4.3.2)

The detailed derivation is done in the appendix A.4. So any pairs (∆1, λ1) and (∆2, λ2)

describe a shape equally well if they are connected by the shape invariant scale transformation

(4.3.1). The scaling parameter ∆ and bare line tension λij can be expressed by one parameter,

the renormalized line tension

λ∗ij = λij + µ2
ij ln

∆

l
, (4.3.3)

where l is an arbitrary length unit and often set to the square root of the droplet area
√

A.

Note that the scaling law is valid only if ∆ is smaller than the curvature radius, i.e. if the

shape is sufficiently smooth on ∆-scale. At three phase intersection points a singularity in the

curvature occurs and the scaling law is not applicable in these points. In two phase coexistence

the scaling law holds if ∆ is sufficient small.

4.4 Pendant droplet tensiometry in monolayers

The idea is to apply the Young-Laplace-equation (4.2.1) to experimentally observed structures

and to determine interaction parameters. The electrostatic pressure (4.2.2) can be calculated

numerically by integration over the images.
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4.4.1 Experimental

Methyl octadecanoate (MOD) from Sigma-Aldrich and 1 mol % of the fluorescence dye

nitrobenzoxadiazol-hexadecylamin (NBD-HDA) from Molecular Probes were spread on pure

millipore water (Milli Q) from chloroform solution. The spreading was performed at a tem-

perature of T = 27.5◦C to an area of α ≈ 40Å2/ molecule.

Under these conditions the three phases G, LE and LC coexist and wetting LE droplets

on LC interfaces in gaseous environment are observed. After expansion to α ≈ 100 Å2 and

recompression 2D pendant LE-droplets on LC-border lines occur. Two fluorescence microscopy

images of such droplets are shown in figure 4.4.1. Figure 4.4.1 a) shows a droplet at an area per

molecule of α = 30Å2. The droplet curvature changes as one moves along its LE/G boundary.

Close to the points where the droplet is attached to the LC-phase the curvature is negative

with a concave droplet shape. About 20 µm from the LC phase the curvature changes sign

and the droplet is convex with a radius of curvature of roughly 20 µm. The droplet partially

wets an extended LC-region. The characteristic shape of the droplet is a result of the interplay

of the line tension, electrostatic self interaction, and the electrostatic repulsion from the LC-

phase to which the droplet is attached. Figure 4.4.1 b) is taken at an area per molecule of

α = 25Å2, where the droplets are confined to circular gas cavities. Its shape is closer to a

circle than that of figure 4.4.1 a). The change in sign of the droplet curvature occurs much

closer (≈ 5 µm) to the LC-boundary than that of the less confined droplet.

Figure 4.4.1: Pendant droplets in the three phase coexistence region LE (bright), LC (gray)

and gas (dark) of a methyl octadecanoate monolayer. The interaction parameters µ̃ and λ̃LE/G

are calculated from the geometry of the images using the Young Laplace equation. a) pendant

droplet at α = 30 Å2 attached to a straight LC-wall b) pendant droplet of a denser monolayer

(α = 25 Å2) formed in a circular gas-bubble
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4.4.2 Numerical image analysis

For any point on the droplet LE/G interface the Young-Laplace-equation (4.2.1) has to be

fulfilled

λLE/Gκ(r) = p−
∑

k

µLE/Gµk

∫
Ak

dA′√
(r− r′)2 + ∆2

3 , (4.4.1)

where the surface potential of the gaseous phase is taken as the reference potential (A.1.7).

For numerical calculation of the integrals in (4.4.1) it is useful to take the line integral ex-

pression instead of the surface integral expression. The line integral expression is obtained by

application of Green’s theorem (A.3.2) given in the appendix A.3. The pressure integrals in

eq. (4.4.1) can be separated into interactions of the droplet with the LE-regions:

ILE = −
∫

∂ALE

d s′
n′ · (r− r′)

∆(ρ + ∆)ρ
(4.4.2)

with

ρ =
√

(r− r′)2 + ∆2 (4.4.3)

and into interactions of the droplet with the LC-regions:

ILC = −
∫

∂ALC

d s′
n′ · (r− r′)

∆(ρ + ∆)ρ
, (4.4.4)

where the integration is performed over all LE (LC) boundaries in the monolayer. All tangent

vectors t′ are chosen in such a way that the LE (LC) phase is to the left and n′ is pointing

into the LE (LC) phase. The integrals (4.4.2) and (4.4.4) are determined by the structure and

can be calculated by numerical integration over the experimental images. This has been done

by approximating the boundaries by cubic splines traveling through sampling points set at a

separation of approximately 5 µm. The scale parameter has been set to ∆ = 10 pixels ≈ 4 µm

(making use of shape invariant scaling). This chosen scale contains all the information, is

much smaller than the minimum curvature and much larger than step width of the integration

(0.4 µm).

For each sample point r(si), i = 1, 2, 3 . . . N at the LE/G droplet boundary the Young-Laplace-

equation (4.4.1) can be formulated, which yields an overdetermined linear system of equations

µ̃ILE(si) + ILC(si) + λ̃LE/Gκ(si) = p̃. (4.4.5)

In equation Eq. (4.4.5) the integrals ILE and ILC and the curvature κ are geometrical quantities

determined from the fluorescence images while the dimensionless pressure

p̃ =
p

µLE/GµLC/G

, (4.4.6)
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the dimensionless line tension

λ̃LE/G =
λLE/G

µLE/GµLC/G

(4.4.7)

and the ratio between the relative surface potentials

µ̃ =
µLE/G

µLC/G

, (4.4.8)

are the unknown material parameters in units µLE/GµLC/G.

One can eliminate p̃ in eq. (4.4.5) by introducing the fluctuations

δf(si) = f(si)−
1

N

∑
j

f(sj) (4.4.9)

to find:

µ̃δILE(si) + λ̃LE/Gδκ(si) = −δILC(si). (4.4.10)

The two parameters λ̃LE/G and µ̃ are determined by applying a least square procedure to

equation (4.4.10) .

In figure 4.4.2 the integrals δILE(s), δILC(s), δκ(s) as well as µ̃δILE(s) + δILC(s) + λ̃LE/Gδκ(s)

are plotted as a function of the position s along the LE/G boundary for the droplet in figure

4.4.1 a).

As one can see the least square deviations are approximately 10% of the values of the integrals

and errors are in the same order of magnitude. The least square procedure is more accurate

for the determination of λ̃ than for µ̃. We applied it to 14 different LE-droplets and found

µ̃ = 0.26± 0.12 and λ̃4µm
LE/G = 3.3± 0.2.

Figure 4.4.2: Plot of the integrals δILC(s), δILE(s), δκ(s) and δILC(s) + µ̃δILE(s) + λ̃δκ(s),

(µ̃ = 0.7, λ̃ = 4) along the boundary of the droplet presented in 4.4.1 a. The deviation of the

latter sum from zero is about 10% of the size of the first three graphs and the error in λ̃ for

this individual droplet is also around 10%.
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In order to be able to compare the line tension with values in literature usually given on

Å-scale the shape invariant scale transformation is applied. It yields with ∆ = 5 Å [46] and

VLC−VG = 0.41±0.01 V, VLE−VG = 0.15±0.03 V [16] the line tension λ5Å
LE/G = (0.6±0.2) pN.

Wurlitzer [26] measured in methyl octadecanoate monolayer the relaxation of G stripes in LE

λ5Å
LE/G = (0.4± 0.2) pN and of LE stripes in G λ5Å

LE/G = (2.2± 0.7) pN.

4.5 Discussion

The concept of interfacial tension and long range interaction, together with a scaling law for

the dividing length scale, is suitable in order to describe shapes in a 2D dipolar systems.

In Appendix A.2.1 the derivation of the Young-Laplace equation is extended to any pair

interaction and external potential. The model demands only sharp interfaces and constant

material parameters within each phase. A number of interactions could be described by

the line tension/long range potential-concept. Dietrich [55, 56] found a dependence of the

surface tension of water probed by X-ray reflection on the wave vector of the X-ray beam.

The wave length of the X-ray beam can be interpreted as the length scale of the surface

tension measurements. The results point out a decrease in surface tension at smaller scales,

consistent with a scaling theory with attractive long range forces. So the concept looks very

promising for systems with long range van-der-Waals forces or other long range interaction

systems. However, the usual concept of describing long range van-der-Waals interaction in

3D is taking into account only the interaction of the substrate as a function of the distance

(surface function P (z)). The interaction is described by a Hammaker constant and the self

interaction is neglected.

In 1997 it was reported by Yeung et al. [57] that dissipative processes lead to violation of

the Young-Laplace-equation in non-equilibrium. Rey derived the Young-Laplace equation for

anisotropic liquid crystals [58], and Minkov and Novick-Cohen [59] reported on droplet shapes

under the influence of van-der-Waals forces. The latter stated a Young-Laplace-equation with

pressure arising from interaction with the substrate taking no account of self interaction.
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Chapter 5

2D dipolar foams

Foams are structures with a high surface to volume ratio. They are formed by a collection

of bubbles surrounded by a continuous phase. One distinguishes between wet and dry foams.

Wet foams, including emulsions, are solutions of spherical bubbles where the bubble interfaces

are stabilized by soluble surfactants. Dry foams are formed by reducing the volume fraction

of the liquid towards the critical packing density of the bubbles. They consist of facets of

minimal surfaces bounded by Plateau borders [60]. Most of the liquid remains in the Plateau

borders, where generically three different thin films meet. The cross over from the wet foam

to a dry foam occurs in conjunction with the change in shape of the foam during formation

of facets and Plateau borders. It is governed by short range interactions within the thin

films. On a macroscopic scale the shape consists of spherical segment films, and also the

Plateau border surfaces are constant curvature surfaces. A non constant curvature of the

surfaces becomes apparent only on the length scale of the short range interactions. Foams are

metastable structures with a finite relaxation time.

In the present paragraph we investigate 2D foams in Langmuir monolayers of fatty acids. In

contrast to the 3D foams (or non-dipolar 2D foams [61–64]) no interface active substances

(in 3D: surfactants) are necessary in order to stabilize the foam. The presence of long range

dipole repulsion leads to the formation of discontinuous phases ( [39,50] and section 3.4) and

stabilizes the interface of the 2D-structures. Unlike short range interaction foams the foam

does not coarsen persistently but reaches a local equilibrium at a well defined bubble size. We

observe wet foams at low area fraction of gaseous phase immersed in a liquid expanded phase

(LE) as shown in figure 5.0.1 a) and dry them by expansion (fig. 5.0.1 b) and c) ). According

to the calculations of Kwok-On and Vanderbilt [50] the morphologies in figure 5.0.1 b) and c)

are metastable. However, Berge et al. [65] reported on experimentally observed foam stability

over several days.

The equilibrium size of a bubble increases on drying. Theoretical studies on the bubble size by

Wurlitzer et al. [38] showed good agreement with the experiments. The foam was approximated
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by circular bubbles and the interaction model presented here was used. The bubble size has

been found to be determined by the ratio of the line tension and dipole density to the square.

Here we extend these studies focusing on the deformation of the bubble shapes.

5.1 Bubble shapes of ideal 2D foams are universal

Let us assume an ideal periodic hexagonal foam or emulsion (Fig. 5.1.1). The structure is

determined by the gas fraction of the phases Φ = A/a2 sin π
3

(a the lattice constant) and the

shape of one bubble r. The shape depends on Φ, the area of one bubble A and the materials

constants dipole density parameter µ = µ12, line tension λ = λ12 and the scale parameter

∆. Making use of the shape invariant scaling law (4.3.1), the materials parameters can be

expressed by the renormalized dimensionless line tension

λ̃∗ =
λ

µ2
+ ln

∆√
A

(5.1.1)

and one can write for the shape

r =
√

A r̃(Φ, λ̃∗), (5.1.2)

where the dimensionless r̃ stands for a shape of unit area.

At thermodynamic equilibrium the free energy (3.3.1) is a minimum with respect to the size

of a domain [38,66]:

∂F

∂A

∣∣∣∣∣
Φ,∆,λ,µ2

= 0 (5.1.3)

De Koker and McConnell [40] could show that the renormalized dimensionless free energy

F̃ ∗ (defined in appendix A.5 equations (A.5.1, A.5.2)) is invariant to shape invariant scale

transformation. So the minimization (5.1.3) can be replaced by a minimization of F̃ ∗ with

respect to the interaction parameter λ̃∗:

∂

∂λ̃∗
eλ̃∗F̃ ∗(λ̃∗, Φ) = 0 (5.1.4)

Figure 5.0.1: Fluorescence microscopy images of a myristic acid monolayer at a) 41 Å2/molec,

b) 46 Å2/molec and c) 51 Å2/molec showing the cross over from a wet foam toward a dry

foam.
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and determines λ̃∗ in equilibrium as a function of Φ.

Inserting λ̃∗(Φ) into equation (5.1.2) yields the unit equilibrium shape

r̃eq = r̃eq(Φ). (5.1.5)

So the shape r̃eq of the bubbles in a periodic dipolar foam is universal and depends only on

the area fraction Φ and not on the material constants (λ, ∆, or µ).

For the size one finds (appendix A.5)

√
A =

√
A0e

Y (Φ) (5.1.6)

where Y (Φ) is a universal size function and A0 the equilibrium size of an isolated domain

(3.4.2) [66] √
A0 = ∆

√
πe2

8
eλ/µ2

(
≡ λ̃∗0 = ln

8√
πe2

)
. (5.1.7)

The size A0 depends on the materials parameters. At vanishing dipole interaction, µ = 0, it

diverges.

Figure 5.1.1: Sketch of an ideal periodic foam. All bubbles (phase 1) have the same shape and

area A and form a hexagonal lattice with the lattice constant a. The bubble shape is assumed

to have a C6v point group symmetry and is entirely described by its behaviour in a polar angle

range of 0 < φ < π/6.
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Figure 5.2.1: Simulated foams for area fractions a) Φ = 0, b) Φ = 0.5, c) Φ = 0.683, d)

Φ = 0.74 and e) Φ = 0.9. Upon increasing Φ, the bubble size increases. The foam structure

changes from an emulsion of circular bubbles a), b) via c), d), e) to a dry foam with almost

hexagonal shape f).

5.2 Numerical calculation of bubble shapes

The aim is to numerically find the equilibrium foam structure (bubble size and shape) for a

given area fraction Φ of the two phases. We approximated the foam by one central bubble

and 1260 surrounding bubbles in hexagonal order with the lattice constant a (Fig 5.1.1). The

Young-Laplace-equation is solved assuming all bubbles of the foam have the same shape. The

shape for a given Φ and λ̃∗ has been calculated using the procedure described in appendix A.6.

The free energy is minimized using the renormalized dimensionless free energy F̃ ∗ (A.5.4) and

solving the minimum condition (5.1.4) as described in the appendices A.5 and A.6.

In figure 5.2.1 simulated foams and emulsions are shown. In a) at Φ ≈ 0 there is an isolated

domain. Its size A0 is given by equation (3.4.2) found by McConnell [66]. In b) the amount

of the black phase is 50% and the domains are almost circular. Further increasing of the area

fraction to c) (65%) leads to an increase of equilibrium size and a deformation of the bubbles.

In d) (68.3%) and e) (74%) foams are formed and at high Φ f) (90%) dry foams occur with

almost perfect hexagonal bubble shape.

bubble size

In figure 5.2.2 the relative size
√

A/A0 is plotted as a function of the area fraction Φ (black

dots). At lower surface fractions Φ / 0.85 the relative bubble size is well described by a model
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Figure 5.2.2: Relative bubble areas
√

A/A0 = eY (Φ) versus the area fraction Φ at thermody-

namic (metastable) equilibrium of deformed bubbles (black dots), circular bubbles [38] (grey

dots) and a dry hexagonal foam of non interacting facets (grey line).

considering circular domains [38] (grey dots) while at higher surface fractions Φ ' 0.85 the

approximation of the foam by noninteracting liquid facets (grey line) fits quite well

Adry foam

A0

=
8

e2

√
2
√

3

π

√
Φ

1− Φ
. (5.2.1)

The bubble size of a dry foam diverges at Φ = 1.

bubble shape

Figure 5.2.3 shows the results of the shape analysis. The numerical equilibrium shapes are

expressed as a function of their arc length s. A change of the coordinate system from the arc

length toward a polar coordinate system is performed, r̃(s)→ r̃(φ). Due to symmetry reasons

the Fourier expansion of the unit bubble shape reads :

r̃(φ) =
c0

2
+

∞∑
n=1

c6ncos(6nφ) (5.2.2)

The origin is set to the center of the bubble and r(φ = 0) is pointing to an edge. We express

the Fourier coefficients c6n as

c6n = chex
6n f6n(Φ), (5.2.3)

with chex
6n the Fourier coefficients of the unit hexagon 1 and the f6n(Φ) area fraction depen-

dent coefficients describing the deviation of the shape from a hexagon. The coefficient f0 is

1The Fourier coefficients of the unit hexagon are chex
6n = 2−1/233/4π−1 [ln 3 + Ψ(n + 1

2 ) − Ψ(3n + 1
2 )],

where Ψ(z) = d/dz ln(Γ(z)) is the digamma-function . The values of the first coefficients are chex
0 = 0.564,

chex
6 = 1.64 · 10−2, chex

12 = 4.54 · 10−3, . . .
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Figure 5.2.3: Bubble shape parameters f6n versus area fraction. The shape parameters f6n

(5.2.3) switch from 0 to 1 as the shape changes from circular toward hexagonal upon increasing

the area fraction Φ.

approximately 1 for all values of Φ. For n > 0 f6n = 0 corresponds to a circle and f6n = 1 to

a hexagon. In figure 5.2.3 we plot the values of f6n versus the area fraction. The cross over

from circular shapes to hexagonal shapes happens between 65% and 80% area fraction, where

0.3 < f6 ≤ 1.

5.3 Experimental foams dry at predicted area fraction

Myristic acid and pentadecanoic acid from Sigma were spread at room temperature (≈ 20◦C)

from a chloroform solution on pure water subphase (Milli Q). 1 % mol fluorescence dye (NBD-

HDA, Molecular Probes) was added to the chloroform solution. The monolayer was spread to

an area of α ≈ 35Å2 per molecule, where no gaseous phase occurs. Slow isothermal expansion

leads to the formation of small gas bubbles at α ≈ 40Å2 per molecule (figure 5.0.1 a) ),

deformed bubbles at α ≈ 45Å2 per molecule (figure 5.0.1 b) ) and dry foams at areas larger

than Amol ≈ 50Å2 per molecule. The images were recorded and digitized for further evaluation.

The observed foams are non-ideal with polydisperse bubbles in unregular order (Fig. 5.0.1

a)-c)). Deformations are in general not 6-fold symmetric, and a direct comparison of the shape

coefficients f6n (5.2.3) is not possible. We decided to take the mean square deviation from a

circle

σ2 =
〈(r− rc)

2〉 − 〈|r− rc|〉2

〈|r− rc|〉2
(5.3.1)

as a measure for the deformation of the bubbles, where the average of a quantity B over the
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Figure 5.3.1: Experimental ( N and H Myristic acid , � Pentadecanoic acid, � average of the

experiments) and theoretical (periodic hexagonal foam) values of the deformation parameter

σ2 defined in (5.3.1) versus the area fraction Φ. The experimental averages were calculated

over an interval of [Φ − 0.5, Φ + 0.5) with the standard deviation plotted as error bar. For

comparison the deformation parameter of an ideal short range interaction foam is plotted

(lower right).

boundary of the domain is defined as:

〈B〉 =

∫
B(r− rc) · n ds∫
(r− rc) · n ds

(5.3.2)

and rc = 〈r〉. This choice of weighted average coincides with the definition of an area average

〈B〉 =

∫
B dA

A
(5.3.3)

if B is continued from the domain boundary to the interior such that
∫
∇B · (r− rc) dA = 0.

The deformation parameters σ2 were determined for 150 experimental bubbles at different

area fractions Φ. The result is plotted in figure 5.3.1. An experimental trend is obtained by

averaging the σ2 of domains falling into the same intervals of widths 0.1 of the area fraction

Φ. The error bars in σ2 are due to statistical fluctuations between different domains, while the

errors in Φ arise due to a limited field of view and due to a biased choice of images associated

with this (Only images where domains ly entirely within the field of view can be analyzed).

Values of σ2 measured in experiments are larger than the theoretical predictions. At low area

fractions Φ < 0.6, this deviation is an artifact arising from fractal boundaries of the domains

on the scale of the pixels of the images. At larger area fractions Φ > 0.6, where deformations

are larger, it is a real effect due to the fluctuations in shape between individual domains. These

shape fluctuations are suppressed in the ideal periodic foam simulations. Large domains in
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the experiments often exhibit a twofold deformation, which can be much larger than the

deformation of a circle toward an ideal hexagon. So the unregular experimental foam is not

directly comparable to the idealized theoretical foam. However, the cross over from a wet foam

(circular droplets) toward a dry foam (distorted or faceted droplets) in the experiments occurs

at the same area fraction Φ ≈ 0.7 as predicted for the ideal periodic foam. This cross over

happens well below the critical area fraction of closed packed monodisperse circular domains

Φc = 0.9 and the critical area fraction of poly disperse short range interaction foams Φc = 0.84,

according to Bolton and Weaire [64]. The latter simulated a polydisperse foam using a random

Voronoi lattice as described in [67]. The drying at low bubble fraction is an effect of the long

range nature of the electrostatic interactions.

5.4 Discussion

Due to long range dipole interactions foams in Langmuir monolayers do not coarsen persis-

tently but reach a local thermodynamic equilibrium on a well defined length scale. The scale

of the bubbles depends on the materials parameters (dipole density, line tension) and diverges

as the dipole density approaches zero. Only in this particular limit the foams are intrinsically

unstable, the larger structure always has less energy. It has to be mentioned that Berge et

al. [65] observed a coarsening in Langmuir foams. The presented images of Berge et al., how-

ever, are not at constant gas fraction and consistent also to the interpretation that the size is

determined by the gas fraction rather than the relaxation time. The fact of the formation of

at least metastable mesoscopic patterns in Langmuir monolayers is well accepted [38,50,66].

The bubble shapes of an ideal (monodisperse, hexagonal) dipolar 2D foam in equilibrium are

universal. They depend only on the area fraction of the phases and not on material constants.

The size of the bubbles is described by a universal size function in units of the equilibrium

radius of an isolated domain A0 and diverges as the bubble fraction approaches Φ = 1. In fact,

A0 is the only materials parameter necessary for the description of ideal dipolar 2D foams. It

is a function of the dipole densities, line tension and cut-off length. The cross over from a wet

to a dry ideal dipolar 2D foam occurs at a bubble fraction of Φ ≈ 0.7 which is significantly

lower than the critical area fraction Φc = 0.91 of an ideal short range interaction 2D foam [62].

Experimental foams observed in Langmuir monolayers are non-ideal polydisperse foams. The

transition point from wet to dry foam, i.e. the area fraction at which bubbles are signifi-

cantly deformed, agrees quite well with the calculated ideal foam. We suspect that effects of

non-ideality just compensate. The measured transition fraction of Φ ≈ 0.7 is lower than in

polydisperse short range interaction 2D foams Φc = 0.84 estimated by Bolton and Weaire [64]

by computer simulations using a random Voronoi lattice [67].

The presented theory could be applied also to foams observed in ferrofluids [68,69].



Chapter 6

2D wetting

The question of wetting is whether and in which morphology a substance on a substrate is

thermodynamically stable. If a droplet of a liquid is put on a substrate in principle three

different wetting regimes may occur: The first scenario corresponds to a droplet that spreads

and covers the whole surface with a thin film (complete wetting), the contact angle is zero.

In the second scenario the interfaces form a contact angle between 0◦ and 180◦ (< 90◦ partial

wetting, > 90◦ partial dewetting). In the third regime the contact angle equals 180◦ and

one speaks of complete dewetting. Only in the case of partial (de)wetting the three phases

(substance, substrate and matrix phase) meet in a contact line (figure 6.0.1).

For technological application sometimes a certain wetting regime is required. So lubricants

and dyes should completely wet the substrate while water on the rain jacket or bacteria on

implants are preferred to dewet the substrate. So the understanding of wetting and possibly

of a control of the wetting behaviour is an essential question in technology. The wetting

behaviour is very sensitive to impurities or substrate roughness. In the last decades technology

has advanced enough to create smooth and clean surfaces, which are the precondition for well

Figure 6.0.1: wetting regimes a) complete dewetting (θ = 180◦) b) partial dewetting (90 ≤ θ ≤
180◦) c) partial wetting (0 ≤ θ ≤ 90◦) d) complete wetting (θ = 0◦)
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defined wetting experiments. In the last decade wetting research was extended to systems

with long range interaction1. Especially the effect of long range van-der-Waals interactions

on pattern formation in self assembling systems is a feature of recent basic research [70–72],

or the control of the contact angle by application of an external electrical potential (electro-

wetting) [73,74].

6.1 Contact angles in macroscopic 3D systems

Experiments by Young [75] showed that the contact angle on very clean and smooth surfaces

is determined by the interfacial tensions

cos θ =
σgs − σls

σlg

, (6.1.1)

where σgs denotes the surface tension of the gas/solid interface and σls and σlg the surface

tension of the liquid/solid and liquid/gas interface respectively. The Young-condition (6.1.1)

might be interpreted as a force balance with the interfacial tensions pulling on the contact

line. One can derive it by minimization of the total droplet energy. It has been shown that it

holds also in external gravitational field [76].

The Young-condition holds only for ideal surfaces, i.e. the three phase intersection line is

sufficiently flexible in order to equilibrate perfectly. In real systems the contact angle often

depends on its history. In general the regressive contact angle is smaller than the progressive

contact angle. The contact angle hysteris occurs because of pinning effects due to surface

roughness or chemical impurities on the surface. A detailed description of the effects of

nonideality on wetting is given by de Gennes [77].

A feature of recent research is the control of the contact angle making use of the electro-

wetting effect [73,74,78]. Assume a sessile partially wetting droplet of a conductive liquid on

an insulating substrate of the thickness d (Figure 6.1.1). Application of an electrical potential

U on the droplet and the conductor below the insulating layer reduces the contact angle

described by the Lippmann equation (19th century):

cos θ = cos θ0 +
εε0U

2

2σd
(6.1.2)

This effect can be explained by an electrical contribution to the surface tension of the sub-

stance/substrate interface. Since the substance is conductive the electrical potential within

the droplet is a constant. Then the droplet behaves like one plate of a plate capacitor with

the capacity

C =
εε0A

d
. (6.1.3)

1long range force = the range of force is in the order of the extension of the system
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Figure 6.1.1: 1 - conducting liquid; 2 - insulator of thickness d; 3 - conductor. Application of

an electrical potential between the conductor 3 and the liquid 1 changes the contact angle.

The energy stored in the capacitor is given by

Wel. =
CU2

2
=

εε0AU2

2d
(6.1.4)

and can be interpreted as a surface tension

σel. =
εε0U

2

2d
. (6.1.5)

Plugging this in Young’s equation (6.1.1) yields the Lippmann equation (6.1.2). The electro-

wetting effect is the result of a change of the surface energy of the substance/substrate inter-

face. At low voltages it agrees well with the experimental results. The change in the contact

angle can be several 10 degrees. At higher voltages saturation effects are observed, i.e. the

contact angle stays constant even if the electrical potential is increased. The cause of this

saturation effect is still controversially debated [73].

For completeness also dynamical contact angles should be mentioned. If the three phase

intersection line is moved with a velocity u the contact angle deviates from the static contact

angle with the deviation ∆θ. Experiments were performed by Hoffman in 1975 [79] and he

found the empirical relation for small velocities

u ∝ ∆θ3±0.5 (6.1.6)

which agrees well with the theories of deGennes [77] and Cox [80] which predict an exponent

of exactly 3.
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6.2 Contact angles in 2D with dipole interaction

6.2.1 2D Young-condition

Assume a 2D liquid (LE) droplet in gas partially wetting an LC substrate. The minimization

of the free energy F (3.3.1) with respect to variation of the three phase intersection points

yields Young’s condition with bare line tensions (appendix A.2):

cos θ =
λLC/G − λLC/LE

λLE/G

(6.2.1)

For any ∆ the contact angle is a materials constant and does not depend on the droplet shape

or size nor the structure of the surroundings.

In the appendix the derivation is extended to arbitrary pair interactions and external poten-

tials. Young’s condition holds for any 2D system, which can be described by the concept of

bare line tension and long range potential with dividing length scale ∆. Young’s condition is

indeed very strong.

Hagen and McConnell [81] published a paper in 1995 about three phase intersection points

in Langmuir monolayers. They assumed the validity of Young’s condition (6.2.1) without a

proof. We will show in subsection 6.2.2 that the direct measurement of contact on experimental

images is problematic because of the scaling behaviour of the contact angle with respect to

shape invariant scaling.

6.2.2 Scaling laws

Shape invariant scale transformations changes contact angle

Let us apply the shape invariant scale transformation (4.3.1) to a LE-droplet in G partially

wetting an LC-wall. Using Youngs equation (6.2.1) for the initial and rescaled droplet we find

that the contact angle is changed. Since the curvature κ of the droplet exhibits a singularity

at the three phase intersection point the requirement (4.3.2) for the shape invariant scaling

law is violated. So the shape is invariant only not too close to the three phase intersection

point. Eliminating the LC/LE and LC/G line tensions in both Young-equations one finds the

contact angle (shape invariant) rescaling (4.3.1):

θ1 → θ2 = arccos
λ̃LE/G,1 cos θ1 − (2− µ̃) ln ∆2

∆1

λ̃LE/G,1 − µ̃ ln ∆2

∆1

(6.2.2)

with the dimensionless line tension λ̃LE/G defined in equation (4.4.7) and the dimensionless

surface potential parameter µ̃ defined in equation (4.4.8).

In figure 6.2.1 two numerical solutions are shown of the Young-Laplace equation of a partially

wetting droplet of size A with two different sets of (unrealistic) model parameters (∆1, θ1,
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λ̃LE/G,1) and (∆2, θ2, λ̃LE/G,2) connected via the shape invariant scale transformation (4.3.1).

As one can see the shape of both droplets is the same, with deviations only occurring in the

vicinity (distances to the wall smaller than ∆) of the intersection point. The deviations of

both solutions close to the LC-wall are such that their contact angles with the LC-wall differ

in the way predicted by contact angle scaling law (6.2.2).

A consequence of the contact angle rescaling is the following. Because of the shape invariant

scale transformation for the description of sufficiently smooth shapes (4.3.2) it is not necessary

to know the physical cut-off-length, and shapes can be described on an arbitrary (4.3.2) scale

∆ equally well. This does not hold for the contact angle. If one wants to know the real

(physical) contact angle θr and the wetting regime it is necessary to know the physical cut-

off-length ∆r (real scale parameter). If the scale parameter ∆ is reduced to a point below the

optical resolution the contact angle changes are impossible to be resolved optically. So the

contact angle θr is in principle not directly measurable since it ’happens’ most probably below

the optical scale. In subsection 6.2.3 a method of determining the scale dependent contact

angle θ(∆) by droplet fitting is presented.

Contact angle invariant scale transformation describes shape dependence on droplet

size

Here another scale transformation shall be considered, leaving the contact angle invariant.

Young’s equation (6.2.1) only involves the bare line tensions. Consequently the contact angle

Figure 6.2.1: Two calculated (artificial) droplets connected via shape invariant scale transfor-

mation. Close to the edge in the three phase intersection point the shape invariance is violated

and two different contact angles connected by equation (6.2.2) occur.
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is invariant to a scale transformation, which leaves the bare line tensions unchanged, i.e.:

(∆1/
√

A1, λij,1, p1, µi,1)→ (∆2/
√

A2, λij,2, p2, µi,2) (6.2.3)

where λij,2 = λij,1,

p2 = p1 , and

µi,2 = µi,1.

A contact angle invariant scale transformation (6.2.3) does change the shape of a droplet. The

physical relevance of this scale transformation is to describe the changes in shape of a droplet

with its size. Since all droplets should have the same bare line tension their contact angle

must be the same - a materials parameter dependend on the scale ∆.

If one could determine the contact angle on a well defined scale θ(∆) for experimental droplets

of different size one could check out the validity of Young’s equation and determine another

materials parameter θ(∆) 2.

6.2.3 Fitting contact angles with numerical solutions of the Young-

Laplace-equation

Experiments Pendant drops of different size where observed in methyl octadecanoate (MOD)

monolayerys with 1% mol NBD-HDA fluorescence label. The experiments where performed as

described in subsection 4.4.1. Four droplets of different size are shown in Figure 6.2.2. Some of

the material parameters of this system are well investigated. So are the surface potentials [16],

and the bare line tension of the LE/G boundary [26,54].

Numerics A way to measure the contact angle on a well defined scale is to compare theoret-

ical droplet shapes (numerical solutions of the Young-Laplace-equation) with the fluorescence

images of monolayer droplets. The contact angle is the fit-parameter in this droplet fitting

procedure (figure 6.2.3).

Experimental droplets usually have droplet sizes ranging between 10 − 104 (µm)2 and the

position of droplet interface lines or three phase intersection points can be measured with

an accuracy of about ±1 µm. As long as the chosen ∆ is smaller than the resolution of the

experimental image, all ∆’s describe the same experimental droplet equally well (cf. shape

invariant scaling). The calculation of the integrals in the Young-Laplace-equation (4.2.1)

numerically is most efficient on a scale which contains only the measurable information of the

monolayer structure. So for numerical treatment the scale of the optical resolution (∆ ≈ 1 µm)

is the best choice.

2better: the renormalized contact angle θ̃
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Figure 6.2.2: Droplets observed using fluorescence microscopy in the three phase coexistence

region of a methyl octadecanoate monolayer (LE: bright, G: black, LC: gray) with different

droplet areas A = 8.9×10−10m2, 2.0×10−10m2, 0.7×10−10m2 and 0.1×10−10m2. The droplet

shapes depend on their size.

The Young Laplace equation (4.2.1) together with Young’s equation (6.2.1) depend on the

set of parameters (∆, λLC/G − λLC/LE, λLE/G, µLC/G, µLE/G, p). In the numerical treatment

(appendix A.7) the line tension difference of the LC tensions is replaced by the contact angle,

and the pressure is replaced by the area. Also all quantities are made dimensionless (equations

(4.4.8) and (4.4.7)) so that the remaining parameters are: (∆/
√

A, θ, λ̃LE/G, µ̃)

The material parameters of the methyl octadecanoate monolayer phases used for the droplet

simulation were taken from [16, 35, 54] (surface potentials: VLC/G = 0.41 V, VLE/G = 0.145 V,

line tension: λ∆=5Å
LE/G = 0.54 pN).

Rescaling the line tension to ∆ = 1 µm results in the following parameters for the simulation:

λ̃LE/G = 3.81 cf. equations (4.3.1, 4.4.7) and µ̃ = 0.354 cf. equation (4.4.8). The area of the

droplets was measured directly on the image (A = 8.9×10−10m2, 2.0×10−10m2, 0.7×10−10m2

and 0.1× 10−10m2 ).

Figure 6.2.3: If the interaction parameters λ∗ (respectively λ̃∗) and µ̃ are known (here λ̃∗ = 2.6,

µ̃ = 0.354) the Young-Laplace-equation (4.2.1) has infinity solutions according to the boundary

condition θ. Experimental images of droplets can be fitted by solutions of the Young-Laplace

equation where the contact angle θ functions as a fit parameter.
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Figure 6.2.4: a) Simulated droplets using µ̃ = 0.354 [16] and λ̃LE/G = 3.81 [54] , ∆ = 1 µm and

the experimental areas of the droplets of figure 6.2.2. A value of α = 73◦ for the contact angle

has been found by shape fitting.

b) (∇) Experimental and theoretical (solid line) values for the global wetting parameter

PLE/G/PLE/LC. PLE/G/PLE/LC diverges in the simulations as A approaches Adw ≈ 10−9m2.

For A > Adw droplets are globally unstable and should not be observed in experiments. Note

however that the numerical iteration procedure used for the simulations no longer converges

for A ≈ Adw, so that one can only extrapolate the value of Adw.

The according simulated droplets are shown in figure 6.2.4 a). On this scale (∆ = 1 µm) the

fitted contact angle is α = 73◦. With Young’s equation (6.2.1) one finds λ∆=1 µm
LC/G − λ∆=1 µm

LC/LE =

0.093 and for the spreading coefficient:

S =
λLC/G − λLC/LE − λLE/G

λLE/G

(6.2.4)

it was found S∆=1 µm = −0.7.

An eye inspection of the droplet shapes in figure 6.2.2 and figure 6.2.4 a) shows reasonable

agreement between the numerical solution and experiment. A more quantitative comparison
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Figure 6.2.5: Numerical solutions of the Young-Laplace-equation (4.2.1) fitted to the largest

experimental droplet in figure 6.2.2 demonstrating the shape invariance of the droplet under

shape invariant scaling (4.3.1). Close to the wall (distance of the order ∆) the droplet shape is

not invariant. It ends at the wall with a ∆ dependent contact angle described by eq. (6.2.2).

The parameter sets (µ̃ = 0.354, ∆1/
√

A = 0.078, θ1 = 95◦, λ̃1 = 3.5, ) and (µ̃ = 0.354,

∆2/
√

A = 0.004, θ2 = 0◦, λ̃2 = 4.45) of both numerical solutions are related by a shape

invariant scale transformation.

may be obtained by measuring the ratio of lengths PLE/G/PLE/LC of the LE/G and LE/LC

boundaries (figure 6.2.4 b)). The ratios PLE/G/PLE/LC obtained from the experimental droplets

agree well with those calculated by the numerical procedures for all droplet sizes. So the

validity of Youngs rule could be confirmed by the experiments.

6.2.4 Conclusion: cut-off-length ∆ is a mesoscopic quantity

Now it shall be studied what happens if the scale transformation (4.3.1) is applied in order

to reduce ∆ to a more realistic value. Remember that ∆r is expected to be in the range of

nm - the length scale of attractive van-der-Waals interactions. The transformation changes

the shape of the droplet only close to the LC-wall, where it cannot be resolved in experiment

anyhow. The contact angle scaling law (6.2.2) predicts that the droplet with lower ∆ partially

wets the LC-interface with a lower (for 0 < µ̃ < 1) contact angle. Because the contact angle

is restricted to values between 0◦ and 180◦ also the scale parameter ∆ cannot be arbitrary.

In the figures 6.2.5 and 6.2.6 the experimental contact angle θ∆=1 µm = 73◦ in dependence of

the scale parameter ∆ using equation (6.2.2) is plotted. One finds real contact angles only for

∆-values larger than ∆min = 0.12 µm. For values ∆ < ∆min the contact angle is imaginary

and the droplet can no longer be a partially wetting droplet.

Can the droplet be explained within the framework of the outlined theory with ∆ < ∆min?
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Figure 6.2.6: ◦ Fits of the contact angle to the large experimental droplet in figure 6.2.2 with

different scale parameters 0.12 µm < ∆ < 2.3 µm using bare line tensions related by shape

invariant scale transformations. The shapes in the entire ∆-range are lying between the

extremal shapes (I =̂∆ = 0.12 µm and J =̂∆ = 2.3 µm) presented in figure 6.2.5. The fitted

contact angles agree well with those calculated via equation (6.2.2) (solid line) - a check for the

reliability of the numerics. With increasing ∆ the wetting mode changes from partial wetting

to partial dewetting. For ∆ < 0.12 µm one finds no numerical solution fitting the experimental

droplet. For ∆ > 2.3 µm ∆ comes in the range of the radius of curvature of the experimental

droplet and the shape invariance fails on the experimentally observable resolution.

The droplet approaching ∆min from above approaches complete wetting. A straightforward

guess is therefore that the droplet for ∆ < ∆min can be described by a completely wetting

droplet, with a thin film of thickness d (figure 6.2.7 b)). Since we did not observe any thin

film in the microscope images, the theoretically calculated film thickness d must be below

the resolution of the microscope, if this assumption were true. We will show in the following

that the theoretically predicted film thickness is larger than the microscopic resolution and a

completely wetting droplet can be excluded.

The Young Laplace equation of a thin LE-film separating an LC and a G semiplane can be

solved analytically. For such a film one finds the disjoining pressure (using (4.2.1)) of the film

to be:

p− (µ2
LE − µ2

G)π

∆
=

2µLE/GµLC/LE

∆
arccot

d

∆
(6.2.5)

In equilibrium this pressure is in balance with the Laplace-pressure inside the droplet. We

have arranged the terms in equation (6.2.5) in a way that the left hand side does not change

upon shape invariant scale transformations. The Laplace pressure inside the pendant droplet

can be calculated from the numerical droplet (Appendix A.7). For the large droplet (A =

8.9 ∗ 10−10 m2) in figure 6.2.4 it is found to be

p−
(µ2

i − µ2
j)π

∆
= 5.7 ∗

µLE/GµLC/G√
A

. (6.2.6)
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Figure 6.2.7: Sketch of a pendant LE droplet a) partially b) completely (pseudo-partially )

wetting an LC/G interface. If the film thickness d of the completely wetting droplet were

smaller than the optical resolution an experimentally observed droplet could be interpreted in

both ways.

Plugging equation (6.2.6) in equation (6.2.5) one obtains the film thickness d in dependence

of the scale parameter ∆:

d = ∆cot
5.7 ∗∆

2
√

A(1− µ̃)
≈ 2
√

A(1− µ̃)

5.7
= 6.8 µm (6.2.7)

The approximation in (6.2.7) holds in the whole range of the model (∆ �
√

A). One finds

that the film thickness has a value of d = 6.8 µm for all scale parameters ∆- this is large

enough to be observed. Because we did not observe such film we conclude that the droplet is

a partially wetting droplet and a three phase intersection point exists.

Another weak point of the theory is that only one scale parameter ∆ is taken into account

instead of one cut-off-length ∆i for each phase i. If the shape invariant scaling law holds, i.e.

the shapes are sufficiently smooth, this simplification is justified and mathematically correct.

In the three phase intersection point the scaling law is not valid and that’s why the effect of

different ∆i has to be studied: The generalized scaling law (4.3.1) for the line tension has the

form

λij,2 = λij,1 − µiµij ln
∆i,2

∆i,1

+ µjµij ln
∆j,2

∆j,1

. (6.2.8)

Note that ∆i = ∆j yields equation (4.3.1). Now the ’down-scaling’ from scale ∆ has to

be performed considering each individual cut-off-length for the individual line tensions. The

calculations are performed in appendix A.8 and show that no set ∆i in range of some Å and

tens of nm yield a real contact angle θ(∆i).
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So indeed ∆r is a mesoscopic quantity. With an interpretation of ∆r as the length scale on

which short range attraction overbalance the dipole long range repulsion one would expect

∆r in the order of nm. With the most common interpretation in literature as the molecular

distance between the molecules one would expect even Å. So the lower limit here determined

for ∆r is at least two orders of magnitude larger than expected - no short range interaction

known to us has this range.

It shall be pointed out again that ∆r has been never measured. In systems with smooth

surfaces (4.3.2) it is in principle not measurable from the shape because of the shape invariant

scale transformation. So the large ∆ is not in contradiction of any experiment, only of its

suggested interpretation. The theory demands a scale parameter ∆ for keeping the long

range interaction energy finite and within this concept several features in monolayers can be

explained satisfactorily. We might think about an interpretation of ∆r, other than the range

of short range attraction:

Pinning effects It might be possible that the LE droplet is pinned to the LC substrate by

some impurity. If the impurity - maybe a small particle - is unpolar and larger than 0.12 µm

in diameter the droplet can be stably attached to the wall via the impurity. However, other

observations give evidence that this is not the case. In corresponding experiments we disturbed

the thermodynamic equilibrium using an IR-Laser as heating device [12] and let the monolayer

relax. During the procedure the three phase intersection points moved and equilibrated very

fast (t ≈ 1 s). Pinning on the highly viscous LC wall would not allow this fast movement and

equilibration of the droplet shape.

Surface effect of the phase boundaries We suggest an interpretation of the large ∆r

as an interfacial effect on the droplet border line. Note that the ∆ which enters the Young-

Laplace equation occurs only in integrals describing the electrostatic pressure on the droplet

interface. With this interpretation ∆ has the meaning of a dipole correlation or healing

length on the phase boundary and describes the nonideality (in the sense of Gibbs) of the

1D interface. Previous papers [16, 54, 82] report on a change of the materials parameters on

phase boundaries from that in the bulk, which is consistent with this interpretation. In 3D

van der Waals already presented a microscopic theory describing the density profile of a liquid

on a liquid/gas interface by a correlation length ξ [83], later Buff, Lovett and Stillinger [84]

extended the theory including surface fluctuations leading to a broadening of the density

profile. Presumably in 2D the surface potential cannot switch from its value in the LE-

phase toward that in the G-phase on length scales smaller than 0.1 µm as the electric fields

around this transition become energetically too costly. Another explanation might be unpolar

impurities which form a kind of 1D monolayer on the ’droplet surface’.
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6.2.5 Discussion

It has been found theoretically that Young’s condition in 2D is not affected by external or

pair interaction potentials. Contact angle measurements by droplet fitting approve this result

in a Langmuir monolayer - leaving the physical meaning of the scale parameter ∆ open for

interpretations.

One should expect a similar universality of Young’s condition in 3D. In 1966 Gretz [85] found

a deviation of experimental contact angles from Young’s condition if the droplets are very

small. He resolved the problem by postulating a line energy proportional to the length of the

three phase intersection line. The (3D) line tension causes a size dependence of the contact

angle for small droplets. Young’s condition (6.1.1), modified by the line tension term then

yields the Gretz-condition

cos θ =
σgs − σls − λgls

R sin θ

σlg

, (6.2.9)

where λgls is the line tension of the three phase intersection line and R the curvature radius

of the cap. The Gretz equation is an empirical equation but quite popular in the description

of small polymer drops [86]. Joanny and de Gennes [87] theoretically predicted a positive line

tension. Further computer simulations where published indicating a violation of Young’s law

for droplets containing polymer chains [86,88,89], but in quite good agreement with the Gretz

equation.

The deviation from Young’s law arises from another interfacial energy - the line tension of

the three phase intersection line. One might conclude that the experiments and simulations

with 3D systems in the length scale of van-der-Waals forces approves that the contact angle

is determined by the interfacial tensions and not by the long range interaction.

6.3 Shape instabilities of wetting droplets

Free circular domains become unstable if they exceed a certain size (see subsection 3.4)

√
A2 =

√
A0e

7/3, (6.3.1)

where A2 denotes the critical area with respect to a two-fold deformation and A0 is the

equilibrium area of an isolated domain (3.4.2). Free droplets with a larger area are deformed.

For these droplets several different shapes fulfil the Young-Laplace-equation 4.2.1 instead

of one solution for smaller sized droplets (circle). The question arises whether these shape

bifurcations occur also for wetting droplets and whether the presence of the dipolar substrate

has a stabilizing or destabilizing effect.
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6.3.1 Theory

The straightforward approach would be to find shapes fulfilling the Young-Laplace-equation

using the numerical procedure described in 6.2.3. If several metastable droplet shapes exist

also for the Young-Laplace-equation several solutions for one set of parameters (µ̃, λ̃LE/G,

∆/
√

A, θ) exist.

However, testing the numerical procedure showed that in a restricted region of parameter space

one and only one solution of the Young-Laplace equation could be found. Most probably this is

a property of the used algorithm. The iteration procedure does not converge in the parameter

range where bifurcations are expected or the algorithm finds only one shape fulfilling the

Young-Laplace equation even if there exist many. So this approach fails here.

Khattari and coworkers (the author included) [90] developed a theory for a simplified geometry

avoiding an explicit calculation of the shape. Assume an LE-droplet wetting a LC-substrate

in gaseous surroundings. The droplet is approximated by a circular segment attached to a

straight wall (figure 6.3.1). This circular segment is determined by only two parameters: the

droplet area A and the angle φ on the intersection point of the sphere and the wall (figure

6.3.1).

Note that the angle φ is not equivalent to the contact angle θ. It is a shape parameter

describing how ’pendant’ the droplet is. If shape bifurcations occur, several φ exist which

locally minimize the free energy. The contact angle θ is a materials parameter while φ is not.

For this simplified geometry it is now possible to find an analytic expression for the free energy

Figure 6.3.1: The shape of a wetting droplet is modeled by a circular segment with the area A

and the angle φ. The parameter φ describes how ’pendant’ the droplet is and is not equal to

the contact angle θ. φ > 90◦ correspond to pendant droplets and φ < 90◦ to sessile droplets.
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(3.3.1) of the circular segment3. It has been tested by comparison with numerical calculations

of the free energy for some arbitrary interaction parameters.

In thermodynamic equilibrium the free energy is a minimum with respect to the shapes rep-

resented by φ under constraints of constant droplet area

∂F

∂φ

∣∣∣∣∣
A

= 0. (6.3.5)

Equation (6.3.5) has been solved numerically. A special case with a continuous splitting into

two (meta)stable branches is shown in figure 6.3.2. Generally the following results could be

found:

• the maximum number of solutions for one set of materials parameters is 2

• shape bifurcations occur only if µLE/G and µLC/G have the same sign

• shape bifurcations occur only if the dipole interaction within the droplet is stronger than

within the wall |µLE/G| > |µLC/G|

• the critical area always exceeds the critical area A2 of a free droplet (6.3.1)

Generally, the circular segment model predicts a stabilizing effect of the substrate on the

wetting droplet. In methyl octadecanoate holds µLC/G > µLE/G and therefore according to

the circular segment model all the droplets presented in the last subsection 6.2 are the only

solution of the Young-Laplace equation. In another scenario in methyl octadecanoate, where

LE-droplets wet LC-foams (µLE/G > µfoam/G), bifurcations are expected if the droplet area at

least exceeds the critical area of a free domain A2. Using equations (6.3.1) and (3.4.2) and

the materials parameter for methyl octadecanoate [16, 54] yields a critical area of Ac > A2 ≈
40×10−10 m2. This is 4 times larger than the largest pendant droplet observed in the system.

3Khattari found for the free energy the expression

F =

2RλLE/G

(
φ

(
1− 2

µLE/GµLC/G cos(φ)
λLE/G

−
µ2

LE/G

λLE/G
ln

8R

∆e

)

+sin(φ)
(

λLC/LE − λLC/G +
µLE/GµLC/G

λ
ln

4R2 sin4(φ)
∆2

−
µ2

LE/G

λLE/G
ln

8R sin2
(

φ
2

)
tan

(
φ
2

)
∆

− µ2
LE/G

λLE/G
=
(
dilog(1 + eiφ)− dilog(1− eiφ)

) (6.3.2)

with

dilogx := −
x∫

1

ln t

t− 1
dt (6.3.3)

and

R =

√
A

φ− 1
2 sin 2φ

. (6.3.4)
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Figure 6.3.2: (Taken from [90]) Calculated shape parameter φ by numerical solution of equation

(6.3.5). The scale has been set to ∆/
√

A = 0.001 and the line tension difference of the LC-

line tensions is set to zero on any scale λLC/G − λLC/LE = 0 (In fact with this assumption

the LC-line tensions do not obey the shape invariant scaling transformation and represent

different physical systems on each scale. For the problem here this is not important.) The

dimensionless line tension λ̃LE/G (4.4.7) has been used as control parameter in the numerics

and this corresponds to a change in area keeping the materials parameters ∆, µ̃ and λ∆
LE/G

constant. φ is plotted versus the droplet area in units of A2 - the critical area of two-fold

deformation of an isolated droplet (6.3.1).

Solid black line: µLE differs from µG = µLC. Dashed black line: µLE = µLC. Gray lines: value

for µ̃ on which a continuous split into two bifurcation branches occurs.

Solid gray lines represent stable contact angles while dotted lines represent metastable solu-

tions.

6.3.2 Experiment

In the paper [90] an experiment is presented which is interpreted as a shape bifurcation

of wetting droplets in a methyl octadecanoate monolayer. After a local distortion of the

monolayer pattern a partially wetting droplet remained for 0.5 s in a metastable state before

it spontaneously flips to another shape. Fluorescence images are shown in figure 6.3.3.

The materials were used as described before in subsection 4.4.1 (1% mol NBD-HDA fluo-

rescence label). The monolayer was spread to an area of ≈ 40 Å2 and slow expansion to

α ≈ 100 Å2) leads to the formation of dry LE- and LC-foams in the gaseous matrix phase.

The droplet in figure 6.3.3 was created by cutting a LE-lamella with the IR-laser. The laser

was focused on the air water interface and used at low power (≈ 100 mW). The relaxation of

the monolayer to this local distortion has been observed and recorded.
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Figure 6.3.3: Upper: Fluorescence image in the three phase coexistence region (LE- and LC-

lamellas in G) of methyl octadecanoate monolayer. For about 0.5 s the LE-droplet wetting the

LC-foam bubble remains in a pendant droplet shape (left image). Then it flips spontaneously

into a flatter sessile droplet shape (right image). Pinning effect or shape bifurcation of wetting

droplet?

Below: The shape parameter φ from a circular segment model plotted versus time. At t = 0

s a stable droplet was established.

6.3.3 Discussion

In the qualitative behaviour experiment and theory agree, i.e. the theory predicts bifurcations

of wetting droplets if LC-foams are wetted. However, the predicted size of a bifurcating

droplet and the experimentally observed one are in obvious contradiction. The area of the

experimental droplet is small (≈ 1× 10−10 m2) compared to the expected critical size (larger

than 40× 10−10 m2).

In fact the theory takes a very simple geometry into account and one might doubt whether the

behaviour is modeled correctly. On the other hand the stabilizing effect of the surroundings on

monolayer domains is also found in the 2D foams, where bubble sizes exceed the critical area

of two-fold deformation because of the presence of neighbour-bubbles. And the experimental

bifurcating droplet is indeed very small compared to the area of other wetting droplets or

LE-domains observed in the system.

One interpretation is that the theory assuming constant bare line tensions and surface po-

tentials reaches its limits in this case. This interpretation is suggested in [90] and the graph

6.3.2 is plotted versus the ordinate µ2
LE/G/λ∗ instead of the droplet area A. If the materials
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parameter µ2
LE/G/λ∗ is not a constant but dependent on the surrounding structure also smaller

droplets might bifurcate. Another experiment by Khattari et al. [48] also found a destabiliz-

ing effect of LC-surroundings which cannot be explained within the presented theory. The

theory predicts generally an increase of the critical droplet area as the local area fraction of

G decreases.

Another interpretation of the experiment is as a pinning effect, rather than a droplet shape

bifurcation. Impurities adsorbed to the LC/LE/G-contact point and that’s why the droplet

could not equilibrate immediately after the LE lamella was cut. So the contact point was

pinned to the substrate for half a second. Then the droplet overcame the pinning impurity

and flipped into equilibrium. A detailed description of pinning in 3D macroscopic systems is

given in [77].



Chapter 7

Biological control of wetting

transitions

There is no doubt about the importance of 3D wetting in our macroscopic world or in the

biological micro cosmos (figure 7.0.1). The question arises whether 2D wetting in cell mem-

branes plays a similarly significant role in biological processes within membranes. The wetting

behaviour could function as a trigger for chemical reactions of surface active substances dis-

solved within different 2D phases. Biological membranes are very complex systems consisting

of several phospholipid components as well as proteins. The length scale of the self assem-

bling patterns of phospholipids is in the range of nm [91] and not easily accessible to direct

observation. Biology discovered the role of several proteins for regulation and as trigger for

other processes, so for instance signal transduction. If processes within membranes are inves-

tigated proteins are within the focus of research . Here the thermodynamics will be studied,

i.e. structure formation and wetting of 2D phases within biological membranes modeled with

a phospholipid Langmuir monolayer.

Figure 7.0.1: Wetting in biological systems. a) partial wetting of nectar on a flower of Hoya

carnosa b) partial dewetting of rain drops on grass (Porneo spez)
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7.1 Controlling of wetting behaviour - theoretical ap-

proach

For technical application and the understanding of biological processes within cell membranes

it might be important to investigate how the wetting behaviour of 2D phases could be con-

trolled by external manipulation, for instance by temperature change, an external potential or

the concentration of an additional substance in the subphase. Of special interest are transi-

tions from complete or partial wetting (phases are in contact) to complete dewetting (phases

are not in contact) or vice versa. The external manipulation could be used either to pro-

duce well defined patterns or to trigger chemical reaction between chemicals dissolved in the

different phases.

In macroscopic 3D systems the contact angle, i.e. the wetting mode, is determined only by

the surface tensions of the different interfaces. If the wetting occurs in an external field, for

instance gravity, the contact angle and wetting mode remain unchanged while a characteristic

dependence of the shape on the droplet size (volume) occurs. In 2D wetting three kinds of

parameters determine the wetting mode: the line tensions between the phases λij, the surface

potentials ∝ µi and the cut off length ∆. Young’s condition for the contact angle holds,

however the contact angle is not directly measurable by image analysis - due to the behaviour

or the droplet interface close to the 2D substrate. In contrast to macroscopic 3D systems the

line tensions λij are defined only together with stating the corresponding scale of observation

(cut-off length) ∆, which is also not directly accessible to measurement.

The effect of the line tensions on the wetting mode is obvious, more complicated might be to

understand the effect of the surface potentials and the cut-off length. In order to understand

the effect of the different parameters on the wetting mode the scale transformation with respect

to some special cases will be studied:

1. the surface potentials of all phases are equal µi = µj (for all phases i and j)

Plugging this into the scaling law for the line tension (4.3.1) one finds

λij(∆1) = λij(∆2), (7.1.1)

i.e. the line tensions do not depend on the choice of the cut-off-length. And for the

curvature one finds using the Young-Laplace equation (4.2.1)

κ = const, (7.1.2)

i.e. all interfaces between the 2D phases are circle segments. Setting all surface potentials

to the same value is equivalent with switching off the dipole interaction. The resulting

system behaves like a 3D macroscopic system with no external field. The structure
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is formed out of circular segments without any characteristic length scale. As in 3D

macroscopic systems larger structures are favoured because they have a lower interfacial

energy per unit area than the smaller ones. One expects macroscopic phase separation

instead of the formation of mesoscopic patterns.

2. the surface potentials of the substrate (phase 1) and the substance (phase 2) are equal,

but unequal to the surface potential of the matrix phase (phase 3) µ1 = µ2 6= µ3

Plugging this into the scaling law (4.3.1) for the line tension leads to a dependency of

the line tensions λ13 and λ23 on the scaling parameter

λ13 = λ13(∆), respectively λ23 = λ23(∆) (7.1.3)

while λ12 is a constant

λ12(∆) = const. (7.1.4)

Due to competition between short range attractive and long range repulsive forces (line

tension versus dipole repulsion) the formation of patterns on a well defined length is

favoured. Plugging µ13 = µ23 into the scaling law for the contact angle (6.2.2) leads to

α1 → α2 = arccos
λ̃23(∆1) cos α1 − ln ∆2

∆1

λ̃23(∆1)− ln ∆2

∆1

(7.1.5)

A contact angle of α2 = 0 implies always a contact angle α1 = 0 independent of ∆1 and

∆2. And α1 > 0 leads for all ∆1 and ∆2 to a real solution for α2 > 0. So in this system

the scale parameter can be chosen arbitrarily small and transforms a droplet without

changing the wetting mode (partial to complete or complete to partial).

3. all surface potentials are unequal µi 6= µj for i 6= j (general case)

As discussed already in section 6.2.4 there generally exists a lower limit for ∆ on which

the contact angle becomes zero. At further decrease of ∆ the droplet would be unstable

and spread to a film. The fact that the coexistence of such a film together with the

droplet could be excluded is also shown in section 6.2.4.

In order to predict wetting transitions by changing some external parameter the interaction

parameters have to be known very well. In most systems this is not the case, but let us try to

formulate some general rules: Slight changes of materials parameters have the largest effect on

the wetting behaviour if the cut-off length ∆ is small and substance phase and substrate phase

have almost the same surface potential. The bigger ∆ the smaller the effect of a parameter

change.
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7.2 Enzymatic control of wetting behaviour in biomimetic

system

Biological membranes consist of lipid bilayers containing other constituents like proteins or

cholesterol. In general membranes are asymmetric, i.e. the composition of the intra- and

extra cellular monolayer of the membrane is different. Membrane potentials arise through this

asymmetry of the dipole densities and due to differences in ion concentrations between the

intracellular and extracellular fluid.

Langmuir monolayers are common model systems in order to study the mode of operation of

enzymes in cell membranes [92–99]. A. Fischer, student of biology, prepared her diploma thesis

with the task to investigate how enzyme reactions are suitable for the triggering of wetting

transitions. Experiments are presented in subsection 7.2.2.

In section 7.3 the possibility of controlling wetting reactions with enzymes in membranes is

discussed in the frame work of the theory outlined in chapter 3.

7.2.1 Fundamentals - lipid-enzyme reactions in membranes

Lipids are esters of glycerol (a triple alcohol) with three (organic) acids. In phospholipids one

of the organic acids is an ester of phosphoric acid and an alcohol. This part is hydrophilic

and forms the ’head’ of the surfactant. The two other organic acids are mostly fatty acids and

their carbon chains form two hydrophobic tails (figure 7.2.1). In living cells they are involved

in chemical reactions catalyzed by enzymes - i.e. proteins located in the subphase or in the

membrane.

Enzyme controlled manipulations of phospholipids in membranes are for instance flips from the

inside monolayer to the outside (controlled by flipases), the phosphorylation of phospholipids

Figure 7.2.1: Phospholipids consist of glycerol (involving the three carbon atoms in the center),

fatty acids with the hydrophobic residues R1 respectively R2, phosphate group and residue R3

which can be choline, inositol (containing a sugar ring) or others. The lipases PLA1, PLA2,

PLC and PLD catalyze the hydrolysis of the ester bonds marked in the figure.
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(e.g. of phosphatidyl-inositol-phosphates) with a parallel reaction of adenosine-triphosphate

(ATP) to adenosine-diphosphate (ADP) or the catalytic hydrolysis of ester bonds in the phos-

pholipids by lipases (PL). In general these enzymes act specific on certain ester bonds as

shown in figure 7.2.1. The hydrolysis with PLC changes the structure of the surfactant head

by cutting a soluble group which is solved in the subphase. This reaction is expected to have

an effect on the dipole moment of the phospholipid, i.e. the surface potential of the monolayer

phases. Using PLA cuts one fatty acid from the phospholipid and results in two different kinds

of surfactants. This results in a mixture of several components and one expects a change of the

phase behaviour, i.e. occurrence of new (mixed) phases with new properties after injection of

the enzyme. Interaction with lipases and monolayers were investigated for instance by Pierony

et al. [93]. Experiments with PLC in DPPC monolayers were performed for instance by Grand-

bois et al. [100] and experiments with PLA2 in monolayers by Dahmen-Levison [95,98]. Since

flip-flop processes do not occur in Langmuir monolayers and the phosphorylation demands

the additional ATP-ADP dephosphorylation, experiments on enzymatic wetting in our group

were focused on the catalyzed hydrolysis of phospholipids with lipases as the simplest reaction

type.

7.2.2 Experimental - PLA2 hydrolysis of DPPC/cholesterol mix-

ture

For wetting experiments three phase systems with two liquid phases or one liquid and one

gaseous phase are required. Tests of several lipases and phospholipids showed that a suitable

system is a phosphatidylcholine/cholesterol mixture in combination with PLA2 (the authors

contribution is mainly in this part of the experiments). So for instance DPPC 1 or DMPC2

mixed with dihydrocholesterol, providing two liquid phases in G. DMPC/dihydrocholesterol

has been investigated by McConnell et al. for several years and is suitable for studying wetting.

So did Hagen and McConnell in the first paper on 2D wetting [81].

The injection of PLA2 changes the area fraction of the phases but does not lead to the formation

of rigid monolayer. So PLA2 is suitable for the wetting experiments. In order to be sure that a

chemical reaction takes place Fischer measured the activity of the enzyme in the bulk and the

air/water interface by AMD-TLC3. She found a higher activity on the interface by a factor of

≈ 1.2. A qualitative AMD-TLC result for the enzyme reaction is plotted in figure 7.2.2 [101].

Commonly in literature the activity of the enzyme is indirectly monitored by some physical

quantity as surface pressure [92, 97] or structure of fluorescence images. With AMD-TLC

1dipalmittoyl-phosphatidylcholine
2dimyristoyl-phosphatidylcholine
3Automated Multiple Development (AMD) technique is suitable for the separation of multi component

mixtures in thin layer chromatography (TLC)
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the educts and products can be identified and indicate that indeed the enzyme reaction is

responsible for the observed structural changes.

Fluorescence images before and after the injection of the enzyme are shown in figure 7.2.3.

For experimental details please consult [102]. As one can see the injection of enzyme leads

to a change of the area fraction of the phases. The number of phases does not change. The

structures after the hydrolysis have a smaller length scale which indicates a decrease of the

line tensions - as one would expect of a mixture compared to pure substances. However, before

and after the injection of the enzyme partial wetting can be observed. So the change of the

line tension did not cause a change of the wetting mode to complete dewetting.

In another experiment 46% mol DMPC and 54% mol dihydrocholesterol together with 2%

NBD-PC fluorescence label were spread from chloroform solution with a total concentration

of ≈ 2 mM (the unit M is equivalent to mol/l). As subphase a buffer consisting of 150 mM

NaCl, 5 mM CaCl2 and 10 mM TRIS was used. The spreading was performed at maximum

area (210 cm2) of the film balance. After relaxation for 30 min the monolayer was compressed

at very slow rate (1 × 10−2 cm2/s) to an area of 80 cm2. Now three phase coexistence with

three phase intersection points could be observed. The enzyme PLA2 had been injected into

the subphase. For this a teflon tube and a syringe was used. The injection was located just

beside the objective and performed very slowly in order to keep the flow within the monolayer

small. The final concentration of enzyme in the subphase was about 7×10−3 units/l [101,103].

Also here partial wetting was observed before and after the injection of the enzyme. However,

the counting of the number of partially wetting domains compared with completely dewetted

Figure 7.2.2: DPPC monolayer hydrolysis by PLA2. The monolayer composition in dependence

of reaction time was investigated using a AMD-TLC device. For comparison the pure educt

(left) and product (right) were measured. The experiment allows to monitor the ratio of educts

and products in time. For details please consult [102].
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Figure 7.2.3: Fluorescence image of DPPC/dihydrocholesterol monolayer a) before and b) after

injection of PLA2. The composition of the phases is changed and results in a dramatic change

in area fraction and structure. Before and after the hydrolysis three phases are observed

(bright, grey and dark) and partial wetting is observed [101].

domains showed some tendency in time which might be interpreted as result of the enzyme

reaction. Ruschel and Khattari counted the number of dewetted and wetted domains within

a time interval of 60 s in the visible region of the monolayer [103]. The results are shown in

figure 7.2.4. The occurrence of wetting or dewetting could be a result of the hydrolysis.

7.3 Discussion

The experiments indicate that a catalytic hydrolysis of monolayer phospholipids leads to a

decrease of the line tension and structural changes. In both observed systems partial wetting

domains are stable before and after the hydrolysis. In DMPC/dihydrocholesterol mixture the

occurance of dewetted and partially wetting domains changed significantly after the injection

of the enzyme and could be an effect of the hydrolysis. The hydrolysis of DPPC or DMPC does

not seem to be suitable in order to trigger the wetting mode but seems to be suitable to affect

the length scale and topology of the formed patterns. Probably in other phospholipid/enzyme

systems also a switching of the wetting mode by the injection of the enzyme can be induced.

Are these results transferable to biological membranes? Different miscibilities of lipids lead to

phase separation or the formation of lipid rafts in biological membranes [99,104]. Since several

components are involved in the membrane several phases with intersection points are expected

and 2D wetting occurs. In membranes the length scale of the formed domains is much smaller

(nm) than in Langmuir monolayers (µm) [91]. If the order of magnitude of the determined cut-

off-length in MOD monolayer ∆r ≈ 0.1 µm (section 6.2.4) is similar in biological membranes,

then the theory presented here reaches its limits. ∆ is then large compared to the length scale

of the system and the long range dipole interaction has only slight effects on the droplet shape



58

Figure 7.2.4: Occurrence of partial wetting domains and completely dewetted domains in

DMPC/dihydrocholesterol mixture after injection of PLA2 versus time. The injection was

performed at t = 0. Although the stability of the wetting phase does not change with re-

spect to the wetting mode the relative occurrence of partial wetting compared with dewetted

domains decreases in time [103].

and stability. Small changes of the materials parameters have only small effects on the wetting

mode, and parameter scenaria which were found to be optimal for wetting control (section

7.1) do not occur. However, if ∆ is self consistent (i.e. the dipolar healing length depends on

the length scale of the structures) then the results of the theory should be well transferable

to biological membranes.



Chapter 8

Apparent violation of Gibbs’ phase

rule in monolayers

8.1 First order phase transition and Gibbs’ phase rule

If the free energy F (or any other thermodynamical potential) is not differentiable with respect

to the thermodynamic state variables (for instance pressure p) one speaks of a phase transition

of first order at this point. Characteristic for this phase transition is a latent heat and an

entropy change upon conversion from one phase to another.

Assume a system consisting of K components forming P phases. The following variables are

needed in order to describe the thermodynamic state: the temperatures Ti (P variables) and

the partial pressures pij of component j in phase i (KP variables).

The system is in thermodynamic equilibrium if thermal equilibrium Ti = T (P −1 equations),

mechanical equilibrium
∑
j

pij = p (in the limit of plane interfaces, P − 1 equations) and

diffusion equilibrium µij = µj ((P − 1)K equations) are reached. Collecting the terms for the

independent variables and equations gives the degrees of freedom f of the system

f = 2 + K − P. (8.1.1)

This relation is the Gibbs’ phase rule. It says for instance that in a one component system

the coexistence of three phases is restricted to 0 dimensions, i.e. the triple point, while the

pressure for two phase-coexistence is fixed for a given temperature.

How strong is the Gibbs’ phase rule? The first assumption made for the theory is the intensivity

of the pressure p1 and temperature T . I.e. the derivation of Gibbs’ phase rule makes only sense

within the limits of vanishing long range interactions. The short range interactions are not

dealt with explicitly, but within the phase-concept they are included in the chemical potentials

1the claim is equivalent to the free energy F to be an extensive variable
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Figure 8.2.1: This figure was taken from a paper by Kjaer et al. [106]. It shows the isotherm and

the corresponding fluorescence images of a dimyristoylphosphatidic acid (DMPA) monolayer

at pH 5.5, 19◦C. The discontinuity in the slope indicates a first order phase transition while

the non-horizontal plateau of two phase coexistence pressure violates Gibbs’ phase rule.

µij. One should expect deviations from Gibbs’ phase rule if long range interactions become

important. Further the phases are assumed to be extended. I.e. no entropy contributions

occur because of the mixing of the phases and all interfaces are unbended. The equations of

mechanical equilibrium gain more degrees of freedom if also curved surfaces are considered.

In macroscopic systems with the phases forming large volumina the effect of curved interfaces

is very small, but in colloidal systems with structures on mesoscopic scales the curvature of

the interfaces enters the equations as another degree of freedom [105].

8.2 Violations of Gibbs’ phase rule observed in mono-

layers

Pressure-area isotherms in Langmuir monolayers exhibit a non-horizontal slope of the two

phase coexistence pressure and violate Gibbs’ phase rule. As an example in figure 8.2.1

the π − A-isotherm of DMPA is shown. The figure was taken from [106]. The isotherm

exhibits a discontinuity at αk ≈ 78 Å2 which indicates a first order phase transition. The

fluorescence images show that two phases coexist over wide pressure range and the isotherm



8.2 Violations of Gibbs’ phase rule observed in monolayers 61

in the coexistence region has a finite slope of at least 0.15 mN/m per Å2. This fact is in

contradiction to the Gibbs’ phase rule (8.1.1), which restricts two phase coexistence in a one

component system at a given temperature to a single pressure. The non-horizontal slope of

the isotherm at two phase coexitence is well reproducible and often reported in the literature.

Another phenomenon apparently violating Gibbs’ phase rule is the observation of an extended

three phase coexistence region instead of a triple point. In figure 8.2.2 the temperature-

molecular area phase diagram of MOD monolayer is plotted. MOD with 1% fluorescence

dye was spread on pure water and observed using fluorescence microscopy. The phases were

identified by eye inspection [107]. The phases G, LE and LC coexist over a temperature range

of around 15 K. The phase coexistence regions violate Gibbs’ phase rule (8.1.1) which predicts

a triple-point and two phase coexistence only along lines within this diagram.

In older literature both effects are accounted to impurities [108–110]. The good reproducibility

of the isotherms, however, point toward a ’real’ effect induced by special features of the

observed system. So several papers occurred in the recent years claiming to identify the

cause for the apparent violation of Gibbs’ phase rule. Israelachvili [111] and Fainerman and

Vollhardt [112–114] presented theories based on the formation of large clusters ideally mixing

with monomers. Ruckenstein and Li [115] found a phase-transition-like behaviour for the ideal

mixing of large clusters. They explained the non-horizontal shape of the isotherm as an effect

of non-ideal mixing (generalized Flory-Huggins-mixing) of the large clusters (=domains) with

the monomers (or free spaces in a Flory-lattice). An estimation of the effect of the dipole

interaction has been done by Möhwald [116] with the result that the effect of the long range

interaction is to small. Nevertheless, later Ruckenstein [117] suggests the dipole long range

interaction to cause the searched deviation from ideality. Unfortunately the presented theory

Figure 8.2.2: Phase diagram of MOD monolayer. The phase coexistence regions violate Gibbs’

phase rule.
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does not make any predictions comparable to experimental results. Kaganer already reported

on strain-mediated phases [118] in other systems. In this section the influence of the long

range interaction, the mixing of clusters or impurities and curved interfaces will be studied.

8.3 Influence of electrostatics

8.3.1 Dipole pressure contribution in isotherm

The effect of the dipole interaction will be roughly estimated. The surface pressure is given

as the derivative of the free energy with respect to the total area:

π = −∂F

∂A
, (8.3.1)

Let us consider a simplified model: a one phase system with the surface potential parameter

µ. The dielectric contribution is given by

Fel. =
1

2

∫
trough

∫
trough

µ2

ρ3
dAdA′. (8.3.2)

Plugging (8.3.2) into equation (8.3.1) yields the dipole pressure contribution

πel =

∫
trough

µ2

ρ3
dA′ =

2πµ2

∆
. (8.3.3)

Note that the same result is obtained by application of equation (4.2.2). In order to estimate

an upper limit of the dipole contribution to the total pressure a surface potential change of

0.5 V and a van-der-Waals cut-off length ∆ = 5 nm2 are plugged in. The result is 0.4 mN/m,

much smaller than the observed pressure change. The isotherm slope in the coexistence region

could only be explained with the dipole interaction if the cut-off-length is ∆ ≈ 1Å. In the

expected range of ∆ between nm and µm the effect of the electrostatics is small. Moehwald

published an approximation with the same result [116].

8.3.2 Electrostatics smears triple point

In the previous section it has been shown that the non-horizontal shape of the isotherm can

probably not be explained by the presence of the dipolar long range interaction since the

electrostatic pressure is too small. Now the effect of long range interaction on the three phase

coexistence will be studied.

2The ∆ ≈ 0.1 µm determined in section 6.2.4 is a property of the interface. Here we have to guess the

cut-off length in the bulk.
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The hypothesis is the following: In a system without long range interaction (=undisturbed)

with phase transitions between the three phases (LC, LE and G) one triple point exists (αtriple,

πtriple) and two phase coexistence occurs on (one-dimensional) lines. In the presence of long

range interactions the pressure is not an intensive quantity but depends on the system geom-

etry and is different in each point. This leads to a broadening of the two-phase coexistence

lines and the triple point to coexistence regions.

The slope of the two phase coexistence line of the phases i and j is given by the Clausius-

Clapeyron equation:
dπij

dT

ξij

(αj − αi)T
, (8.3.4)

where ξij is the latent heat per molecule of the transition from phase i to phase j and αj −αi

is the change of molecular area during the transition. For monolayers direct measurement of

the latent heat by calorimetry is problematic since the total amount of heat is very small in

the monolayer compared to the bulk. However, the latent heat can be estimated out of the

line tension, as suggested by Laplace (in 3D systems) and Muller and Gallet [31] (in Langmuir

monolayers). In this picture the interfacial tension is a result of the energy loss of a particle on

the interface with nint neighbours compared to a particle in the bulk with nbulk > nint. In the

model of Laplace, or rather Muller and Gallet, the interfacial tension is exactly the energy loss

per interface occupied by the particle. Better consistency with experimental results, however,

is obtained by models taking the entropy change into account as well [119]. For 2D and the

simpler theory one finds the estimation

Kλij =
ξj√
αj

− ξi√
αi

, (8.3.5)

where K is the Laplace ratio and contains information about the number of the interacting

neighbours in the bulk and on the interface. The quantities ξi and ξj are molecular bulk

energies and the latent heat is their difference

ξij = ξj − ξi. (8.3.6)

The bulk energy of gaseous phase is approximated by 0

ξG = 0. (8.3.7)

Now the phase diagram for the ’unperturbed’ system can be estimated. The line tensions

between the phases are known for MOD from 2D pendant drop experiments described in

chapter 4 (or [54]) and from experiments by Wurlitzer et al. [35, 36]. The Laplace ratio is

expected to have a value between 2 and 3, for the calculation it is set to K = 3 in order

to obtain an upper limit. A calculated phase diagram is shown in figure 8.3.1 (solid lines).



64

Figure 8.3.1: estimated local pressure-temperature phase diagram using material parameters

of MOD. Solid lines: unperturbed. Dotted lines: pressure variation due to dipole interaction.

The cut-off length ∆ was chosen in a way to obtain the phase coexistence region within a

temperature range corresponding to the experiments presented in figure 8.2.2.

In figure 8.3.1 also the electrostatic perturbation is plotted (dotted lines). The electrostatic

pressure has been calculated using (4.2.2) for planes consisting of one phase only. The so

calculated electrostatic pressure represents an upper limit for the real effect.

πel,max =
2π

∆
(µ2

i − µ2
j) (8.3.8)

The size of the three phase coexistence region is very sensitive to the cut-off-length ∆. The

smaller the scaling parameter ∆ the bigger is the effect of the long range interaction. The

phase behaviour is not invariant with respect to the shape invariant scaling transformation

(4.3.1). Setting ∆ = 0.1 µm as determined in subsection 6.2.4 yields a three phase coexistence

region within a temperature range of ≈ 0.2K. Only a ∆ smaller than 2 nm (plotted in figure

8.3.1) could explain the extended coexistence region within this theory. We conclude that the

extended three phase coexistence could be due to long range interactions, but the contributions

of this dipole interactions are very small.

8.4 Finite size effects become important on nm scale

8.4.1 Mixing entropy due to cluster formation

ideal mixing At phase coexistence in Langmuir monolayers mesoscopic patterns are formed.

Contributions from the entropy of the mixing of these phases in general signify an increase of

the probability of phase coexistence and enlarge the region of phase coexistence. The system
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can be modeled as a chemical reaction of monomers to clusters, each domain representing one

cluster. Let all clusters have the same size.

nA←→ An. (8.4.1)

Domains visualized using fluorescence or Brewster angle microscopy have a diameter from

≈ 10 µm up to ≈ 1000 µm, i.e. aggregation numbers n ranging from 108 to 1012. For this

chemical reaction the mass action law holds

CAn

Cn
A

= K. (8.4.2)

Let the system be a mixture of monomers and clusters in chemical equilibrium. Both compo-

nents are assumed to be ideal gases. The total pressure is the sum of the two partial pressures

related to one another via the mass action law (8.4.2). In figure 8.4.1 the pressure versus

the molecular area in arbitrary units for different cluster sizes are plotted. The shape of the

isotherm strongly depends on the aggregation number n. If n is small (≈ 3) the behaviour

differs slightly from a one-component ideal gas. There is no discontinuity in slope or plateau-

region in the isotherm. If the aggregation number is increased up to ≈ 100 then a plateau

with non-horizontal shape and a ’discontinuity’ in the slope of the isotherm occur. At large

n � 100 the plateau of the isotherm is horizontal. Israelachvili [111] published a similar

approach and found the same results.

In contradiction to that Fainerman et. al. [112, 114, 120] predicted an indirect proportional

behaviour of the pressure with respect to the molecular area in the two phase coexistence

region especially for large n > 1000. Most probably this is an artifact of their approximation

Figure 8.4.1: Calculated surface pressure - molecular area isotherms in arbitrary units for a

monomer-cluster reaction. For large aggregation numbers n > 1000 the isotherm exhibits a

discontinuity and a flat plateau.
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3. Nevertheless, the empirical isotherms are well described by an indirect proportionality to

the molecular area π ∝ 1/α.

The experimental isotherms (figure 8.2.1) agree very well to the n ≈ 100 isotherms. Could

a demixing transition of n = 100-clusters to the mesoscopic domains explain the shape of

the isotherms? The answer is no. Plugging two components (monomers, n = 100-clusters)

and two phases (LE = monomer rich,LC = cluster rich) into the Gibbs’ phase rule yields two

degrees of freedom. The equation for chemical equilibrium between clusters and monomers

(8.4.2) reduces the degrees of freedom by one. So the isotherm-plateau of such a system is

horizontal. Clusters ideally mixing with monomers strictly follow Gibbs’ phase rule and do

not explain the non-horizontal shape of the isotherm-plateau.

non-ideal mixing described by generalized Flory-Huggins equation Ruckenstein

and coworkers published a paper taking non-ideal mixing of large clusters (domains) into

account [115]. Dipole interaction enters the equations in the equilibrium size of the formed

domains using the equation of McConnell (3.4.2). The van-der-Waals interaction is represented

by some kind of latent heat. In the limit of ideal mixing they found that the formation of

the domains with the equilibrium size is phase-transition-like and agrees with the calculations

presented in the previous paragraph. In the theory of Ruckenstein and Li the non-horizontal

plateau of the isotherm is explained as an effect of the non-ideal mixing of the domains within

the monomers.

Flory and Huggins found that the entropy of mixing of long chain-like molecules is larger than

the mixing entropy of hard spheres. The Flory-Huggins mixing entropy provides an upper

limit for this entropy of mixing. The Flory-Huggins entropy for monolayers is

S = −k
∑

i

ln Φi, (8.4.3)

with summation over all species (phases) i and the area fraction Φi. The entropy arises due

to the number of micro states N realizing the macroscopic state.

S = k ln N (8.4.4)

For rigid circular particles the micro states are realized just by different positions of the

center of mass of the particles. The mixing is almost ideal. For long flexible chains many

conformations for the particle exist and therefore much more micro states realize one macro

3The author suspects that Fainerman et al. made a mistake in the mathematics in [112], affecting all

following papers. Equation (11) is obtained by approximating equation (10) (by the way, the approximation

does not hold for large aggregation numbers). Then equation (11) is plugged directly in (10), i.e. a circle

conclusion. The result is an artifact of the approximation. Without the approximation one would get an

equation like 0 = 0.
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state. Flory and Huggins modeled this mixing as the mixing of area elements of the molecules

with the free sites of a so called Flory-lattice. The ideal mixing of each chain-segment of

the molecule in the total volume provides an upper limit for the entropy, where one chain

segment has the size of a Flory-lattice free site. That’s why the area fraction is taken in the

Flory-Huggins equation but the particle number concentration is not.

So the mixing entropy of real mixtures lies between the mixing entropy of ideal mixing and

the Flory-Huggins mixing entropy Sideal < S < SFH. To express this fact Donohue and

Prausnitz [121] constructed a generalized Flory-Huggins equation

S = −k
∑

i

Ni ln
Φiγ

pi−1
i∑

j

Φjγ
pj−1
j

(8.4.5)

where Ni is the number of particles of species i, γi the number of Flory-lattice free sites

occupied by one particle of species i and pi the parameter describing the unideality of the

mixing. For p = 0 the ideal mixing entropy is obtained and for p = 1 the Flory-Huggins

mixing entropy is obtained.

Ruckenstein et al. fitted isotherms with the entropy given by equation 8.4.5 and determined

the exponents p for several shapes. They found best agreement for a value of p = 0.93 - i.e.

almost the Flory-Huggins mixing.

Let us try to calculate the exponent p. Since the observed domains are almost circular addi-

tional entropy can occur only due to variation in the cluster size. In appendix A.9 the equation

of state is calculated considering the entropy of cluster size. One finds that the reaction is

described by the mass action law with reaction constant K ′

Cc

C
〈n〉
g

= K ′(ε, 〈n〉), (8.4.6)

i.e. p = 0. So the behaviour for large aggregation numbers n is the same as for the ideal

mixing system discussed in the previous paragraph. Physically it seems to be not justified to

apply the Flory-Huggins entropy to this system.

8.4.2 Curved interfaces stabilize particles smaller than 1 nm

If an interface is plane the pressure in both phases is the same in mechanical equilibrium. For

curved interfaces the Young-Laplace-equation (4.2.1) describes the mechanical equilibrium of

an interface. In general the Laplace pressure inside a droplet is larger than outside and the

droplet might be stabilized even if the outside pressure is below the phase transition pressure.

Plugging in some example values can show the order of magnitude of the effect: In order

to obtain a pressure of more than 1 mN/m inside a domain with the line tension 1 pN, the

domain radius has to be smaller than 1 nm. So finite size effects do not cause the apparent

violation of Gibbs’ phase rule.
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8.5 Impurity could explain the apparent violation of

Gibbs’ phase rule

The classical explanation for the non-Gibbsian behaviour of the Langmuir-monolayers is the

presence of impurities. In fact it seems to be a killing argument explaining everything and

nothing. Since all other approaches give no convincing answer, we would like to add this

section and present arguments and estimations about impurity effects.

Phases in systems consisting of one component and impurities are mixtures. The properties

of these phases depend on their composition. There are some experimental data pointing

toward this mixture hypothesis: Wurlitzer et. al. [38] found that gas-bubbles in dry foams are

bigger than expected (using the electrostatic theory with constant line tensions and surface

potentials presented in chapter 3) and suggests interpreting the result as an increase in the

line tension by decreasing LE fraction. Further circular LC-domains in gas or LE are smaller

than the predicted radius calculated in section 5.2. Fluorescence images of both processes are

shown in figure 8.5.1, the latter of which points toward decreasing line tension by increasing

the amount of the denser phase. A mixture of two components could explain the effect. The

composition of the phases changes on changing the area fraction. Increasing the area fraction

of the denser phase increases the relative amount of impurity within the phase and leads to a

decrease of the line tension.

Another indication is the following: Khattari observed a shape instability of an LE-domain

confined in a gas hole in LC in MOD monolayer. The instability occurred on compression,

i.e. on decreasing the size of the gas hole. The common electrostatic and hydrodynamic

theory does not explain this phenomenon [48]. According to the results of the 2D foam

simulations and calculations for the wetting droplets a confinement is expected to stabilize the

droplet. If impurities are present, the phenomenon could be interpreted as a mixing transition.

Mixing transitions of cholesterol-rich and cholesterol-poor phases where extensively studied

by Radhakrishnan et al. [122–124]. In figure 8.5.2 the corresponding fluorescence images are

shown. Both are monolayer observations on compression. The experimental observations show

a big similarity.

The impurity theory is also supported by the work of Priester et al. [125]. They could exper-

imentally show that normally Gibbs’ monolayers are polluted and that the impurity has big

effects on the thermodynamic behaviour of the monolayer. So trace impurities cause a linear

shape of the surface pressure-concentration isotherm in Gibbs’ monolayers. The isotherms

became non-linear after application of a purification procedure [126]. The purification is done

by sucking the monolayer from the interface and remove surface active impurities in this

way. Melzer et. al reported on similarities between the surface concentration-surface pressure

isotherms in (unpurified) Gibbs’ and Langmuir monolayers [127]. Both isotherms exhibit a
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Figure 8.5.1: (a) and (b): LC-domains in LE-matrix of a dimyristoylphosphatidic acid mono-

layer at 19 ◦C taken from [106]. (a) shows an isolated domain and (b) the structure at an area

fraction of LC of about Φ = 0.77.

(c) and (d): theoretical calculated structure assuming constant line tensions (see section 5.2).

(c) Φ ≈ 0 (d) Φ = 0.77

(e) and (f): gas bubbles in LE-matrix of MOD monolayer at 20 ◦C taken from [38]. (e) low

area fraction (f) fraction of gas phase Φ = 0.8

The LC-domains are smaller than the theoretical predicted size, the gas bubbles bigger. Both

observations point toward a decrease of the line tension of the denser phase on increasing its

area fraction. Or: compression lowers the line tension.

plateau region with a non-horizontal shape. So it might be possible to check the influence of

the impurity on the isotherm using a purified Gibbs’ monolayer. Pallas and Pethica [108] used

very pure substances and measured the isotherm of Langmuir monolayers. Within the error

their data is compatible to a horizontal isotherm within two phase coexistence. Experiments

by Miller and Möhwald [109] showed that the adding of 1-3% impurities has indeed an effect

large enough in order to explain experimental data.

Let us estimate the order of magnitude of the expected effect in an ideal system. Consider a

one component monolayer with the area concentration of surfactants α with a small amount of



70

Figure 8.5.2: (a) and (b) are taken from [122]. They show fluorescence images of a monolayer

consisting of a Dicholesterol/phospholipid mixture. (1:3) On compression (pressure increase

from 2.4 mN/m to 3.8 mN/m) the topology changes from a emulsion (circular domains in

matrix phase) to a stripe phase with a strong decrease of the characteristic length scale of

the patterns. Radhakrishnan and McConnell interpret the phenomenon as an effect of mixing

leading finally to a miscibility transition.

(c), (d) and (e) are fluorescence images of MOD monolayer taken from [48]. Khattari and

Fischer could show that the shape instability can’t be explained within the ’classical’ theory

(homogeneous phases, constant line tension and surface potentials). The similarity to the

above observation points toward an effect of mixing.

a second component, the impurity with an area concentration α∗ = c∗α. The pure monolayer

exhibits a gas/liquid phase transition at a surface pressure π0, the molecules in the liquid

have the constant molecular area αl. The total pressure πtotal of the gaseous phase then is

the sum of the partial pressures of substance π and impurity π∗. The liquid phase is assumed

as a mixture with the fraction of substance Φl and 1 − Φl impurity. According to Raoult’s

and Henry’s law the partial vapor pressures are directly proportional to the fraction in the

solution:

π = Φlπ0 (8.5.1)

π∗ = (1− Φl)π
∗
0 (8.5.2)
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Figure 8.5.3: Calculated isotherms with 0%, 1%, 5% and 10% impurity in arbitrary units. The

coefficient π∗0 defined in equation (8.5.1) has been chosen π∗0 = 8π0 and the density of the

liquid phase αl = 1
5π0

. Compared to the experimental isotherm in figure 8.2.1 the effect even

for larger amounts of impurity is quite small.

The balance equation for the number of molecules is:

c∗ =
αlπ

∗Φ + (1− Φl)(1− Φ)

αlπΦ + Φl(1− Φ)
(8.5.3)

with the area fraction of the phases Φ. Plugging the pressures (8.5.1) into this equations,

Φl can be eliminated and one can formulate equations for the molecular area and the total

pressure (appendix A.10)

πtotal = πtotal(c
∗, π0, π

∗
0, αl, Φ) (8.5.4)

α = α(c∗, π0, π
∗
0, αl, Φ) (8.5.5)

Figure 8.5.3 shows some isotherms calculated using equations (8.5.4). The parameter Φ (area

fraction of the phases) was varied between 0 and 1, note that equations (8.5.4) describe only

the plateau region. Comparison with experimental isotherms points toward impurity amounts

larger than 5%, if, off course, the behaviour of the substance/impurity mixture is almost ideal.

Experiments by Miller and Möhwald [109] found allready effects of this magnitude with only

1-3% impurity.

8.6 Summary

Neither the electrostatics nor finite size effects as entropy of mixing or curvature can explain the

apparent violation of Gibbs’ phase rule in the non-horizontal slope of the isotherm in many
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Langmuir monolayers or the extended three phase coexistence region in MOD monolayer.

Impurity could explain the isotherm slope. The dependence of the line tension on the area

fraction is an experimental evidence supporting the impurity hypothesis.



Chapter 9

Summary

The pattern formation and equilibrium structure of liquid Langmuir monolayer domains were

investigated theoretically and experimentally. Langmuir monolayers are isolated 2D systems of

amphiphiles on the air/water interfaces exhibiting 2D crystalline, liquid crystalline, liquid and

gaseous phases. The asymmetric arrangement of the molecules, with their hydrophilic head

groups immersed into the aqueous phase, gives rise to permanent electric dipole moments

that are not completely screened and result in a long range dipole repulsion. This long-range

interaction and the two-dimensionality lend these systems most interesting features. The

geometry of liquid domains is determined by the long-range dipole interaction and was optically

measured. The common interaction model is presented taking into account attractive short

range interactions (represented by the bare line tensions) and long range dipole interaction

∝ 1/r3 (represented by surface potentials). The separating length between short and long

range interactions is described by a scale parameter ∆. The interaction model has been

consequently applied to describe the drying of 2D foams and the shapes and contact angles of

2D wetting droplets quantitatively.

Using the interaction model conditions for local thermodynamic equilibrium were derived

within this work: The shape of an interface line is described by a 2D analogue to the Young-

Laplace equation including a dipole pressure term. The contact angle is a materials parameter

described by Young’s equation and determined by the bare line tensions.

It has been shown that the Young-Laplace equation is invariant to a transformation of the

bare line tensions with respect to the scale parameter ∆. This fact has been used in order to

measure the line tension of 2D pendant droplets in methyl octadecanoate by application of

the Young-Laplace equation to their shape (pendant droplet tensiometry).

Further the Young-Laplace equation has been solved numerically in order to predict the shape

of bubbles of a 2D dipolar foam. The competition between long range and short range inter-

actions leads to the formation of mesoscopic patterns on a well defined length scale. It has

been found within the present work that the bubble shapes in a metastable thermodynamic
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equilibrium of an ideal foam are universal, i.e. they depend only on the area fraction of the

phases and not on any materials parameter. The size of the bubbles is described by a universal

size function and the equlibrium size of an isolated domain. The latter is the only materials

parameter needed to describe ideal 2D foams. Experimental 2D foams observed in Langmuir

monolayers are in general polydisperse and far away from ideality. The onset of bubble defor-

mation upon drying the foam (from diluted emulsion with circular bubbles to dry foams with

hexagonal bubbles) has been compared with the ideal foam. Significant deformations occur

in both systems at ≈ 70% area fraction of the bubble phase. The ideal and the polydisperse

dipolar foam dry at lower area fraction than short range interaction foams (91% and 84%

respectively).

In three phase coexistence regions besides the shapes of the droplets the topology of the

phases depends on the electrostatic interactions as well. Consequently the equilibrium ther-

modynamics of 2D wetting has been studied. It is shown that contact angles are not invariant

to shape invariant scale transformation. The contact angle of experimental wetting droplets

were determined on a well defined scale ∆ by fitting the droplets with numerical solutions of

the Young-Laplace equation. The experiments approved Young’s equation (in methyl octade-

canoate monolayer).

It has been found that the restriction of the contact angle to values between 0 and 2π provides

a lower limit for the scale parameter ∆ of ≈ 0.1 µm. The parameter ∆ was measured for the

first time. In literature it was interpreted as a lattice constant of the dipole lattice or the

range of van-der-Waals interactions. The present work shows that this interpretations do not

hold and an interpretation of ∆ as a dipole correlation or healing length on the interface line

is suggested.

Theory and experiment of droplet shape bifurcations of wetting droplets are presented. The

competition between long and short range interactions lead to shape bifurcations of isolated

domains. A variational approach restricting the shape of wetting droplets to circular segments

predicts shape bifurcations when the droplet carries the highest dipole density of the three

coexisteing phases. In general the presence of the substrate has a stabilizing effect on wetting

droplets.

Studies on the relevance of the wetting results for biological systems showed that the control

of the wetting mode may play a role in biological membranes. In our group the membrane

has been modelled experimentally by a Langmuir monolayer containing phospholipids and the

wetting behaviour of different 2D liquids has been observed during an enzymatic hydrolysis of

the phospholipid. Experiments performed by Khattari, Fischer and Ruschel did not exhibit

a change in the wetting mode but a change in the occurance of partial wetting and dewetted

domains.

Finally, possible explanations for the apparent violation of Gibbs’ phase rule in Langmuir
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monolayers were studied. The nonhorizontal plateau of the surface pressure-molecular area

isotherm in the phase coexistence region is a well reproduced feature of Langmuir monolayers

and in contradiction to Gibbs’ phase rule. Also the extended three phase coexistence region

observed for instance in methyl octadecanoate monolayers violates Gibbs’ phase rule. A

quantitative analysis of finite size effects (entropy effects, curved interfaces) revealed that

these effects are too small and play a role only for nm sized particles. Also, the effect of the

electrostatics treated as a perturbation ideal system is too small by two orders of magnitude.

Impurities could explain the isotherm as well as the extended three phase coexistence region.

Several evidences are presented supporting the impurity hypothesis.

In summary, the present work shows that the theory based on a competition of short and long

range interactions is suitable in order to describe a wide field of phenomena, such as shapes,

topology of phases coexisting in Langmuir monolayers and it may possibly be extended to

systems such as ferrofluids or biological membranes. There it might also have technical appli-

cations such as the control of specific signal cascades across the membrane via the membrane

potential.
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Appendix A

A.1 Relative potentials

Let Ψi,j(|ri − rj|) be a general pair interaction between area elements of the phases i and

j and Ui(ri) an external potential. The interaction energy of the potentials depend on the

interacting phases i and j. The free energy is

FPU =
1

2

∑
i

∫
Ai

∑
j

∫
Aj

Ψi,jdAidAj +
∑

i

∫
Ai

UidAi. (A.1.1)

The aim is to find a transformation Ψi,j → Ψ̂i,j, Ui → Ûi with Ψ̂1,i = 0, Û1 = 0 for all i leaving

the shape dependent terms invariant. Allowed transformations are:

• add to the free energy

+
∑
i,j

∫
Ai

∫
Aj

Pk,ldAidAj (A.1.2)

with fixed k and l. This term depends only on the total area of the monolayer.

• add to the free energy

+

∫
Ai

∑
j

∫
Aj

Pi,kdAidAj (A.1.3)

with fixed k. This term just depends on the area of the individual phases.

• add to the free energy the shape independent term

+
∑

i

∫
Ai

UkdAi. (A.1.4)

One finds that

Ψ̂i,j = Ψi,j −Ψi,1 (A.1.5)

(rule (A.1.3) applied for each phase i) and

Ûi = Ui − U1 (A.1.6)
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(rule (A.1.4)) fulfil don’t change the shape dependent terms in (A.1.1).

A symmetrical transformation is

Ψ̂i,j = Ψi,j −Ψi,1 −Ψ1,j + Ψ1,1 (A.1.7)

(using rule (A.1.2) and (A.1.3)). Using this transformation for the dipole interaction trans-

forms µi → µi1, with µij = µi − µj. Since µii = 0 the dipole density of one phase can be

chosen as a reference potential with vanishing contribution from this phase.

A.2 Variation problem

A.2.1 Young-Laplace equation

Let the free energy F in a 2D system have the form

F =
1

2

∑
i,j

λij

∫
{ij}

dsij +

∫
i

∫
j

Ψij(|ri − rj|)dAidAj

+
∑

i

∫
i

Ui(ri)dAi, (A.2.1)

i.e. the sum of the line energy proportional to the length of the interface lines between the

phases i and j, self interaction energy described by the pair interaction potential Ψij and the

energy of phase i in an external potential Ui. The summation is performed over all phases i

and j.

Further assume a mirror symmetrical droplet (phase 1) y = ±y(x) attached to a (long enough)

straight solid interface (x = 0) (substrate phase 2 extended to x < 0) with the contact points

±y(0) and the height h, y(h) = 0. Using (A.1.5) and (A.1.6) the contribution of the matrix

phase 3 is set to 0. In thermodynamical equilibrium the droplet free energy (summation over

domains i)

Fdrop = 2

h∫
0

dx1

(
(λ23 − λ12)y

′)+ 2

h∫
0

dx1

(
λ13

√
1 + y′2

)

+

h∫
0

dx1

y(x1)∫
−y(x1)

dy1

∑
i6=drop

∫
Ai

dAi

(
Ψ1,i(|rdrop − ri|)−Ψ1,3(|rdrop − ri|)

)

+
1

2

h∫
0

dx1

y(x1)∫
−y(x1)

dy1

h∫
0

dx2

y(x2)∫
−y(x2)

dy2

(
Ψ1,1(|r1 − r2|)−Ψ1,3(|r1 − r2|)

)

+

h∫
0

dx1

y(x1)∫
−y(x1)

dy1

(
U1(r1)− U3(r1)

)
(A.2.2)
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is a minimum. This is a minimization problem with moveable contact point under the con-

straint of constant area

A = 2

h∫
0

dx1y(x1). (A.2.3)

The solutions fulfil the Euler-Lagrange equation for the shape

∂F̂

∂y
− d

dx

∂F̂

∂y′
= 0 (A.2.4)

and for the contact point

∂F̂

∂y′

∣∣∣∣∣
x=0

= 0, (A.2.5)

with

F̂ = 2(λ23 − λ12)y
′ + 2λ13

√
1 + y′2

+

y(x1)∫
−y(x1)

dy1

∑
i6=drop

∫
Ai

dAi

(
Ψ1,i(|rdrop − ri|)−Ψ1,3(|rdrop − ri|)

)

+
1

2

y(x1)∫
−y(x1)

dy1

h∫
0

dx2

y(x2)∫
−y(x2)

dy2

(
Ψ1,1(|r1 − r2|)−Ψ1,3(|r1 − r2|)

)

+

y(x1)∫
−y(x1)

dy1

(
U1(r1)− U3(r1)

)
+ 2p13y(x1), (A.2.6)

with the Lagrange parameter p13. The individual derivatives are

∂F̂

∂y
= 2

 ∑
i6=drop

∫
Ai

dAi

(
Ψ1,i(|rdrop − ri|)−Ψ1,3(|rdrop − ri|)

)

+

h∫
0

dx2

y(x2)∫
−y(x2)

dy2

(
Ψ1,1(|r1 − r2|)−Ψ1,3(|r1 − r2|)

)
+ U1(r1)− U3(r1) + p13


∂F̂

∂y′
= 2

(
λ23 − λ12 + λ13

y′√
1 + y′2

)
(A.2.7)

d

dx

∂F̂

∂y′
= 2λ13

y
′′√

1 + y′2
3 = −2λ13κ(x)

Formulating the Euler-Lagrange equation and collecting all the terms yields the general Young-

Laplace equation

λijκij(r) = pij −
∑

k

∫
Ak

(
(Ψi,k(|rij − rk|)−Ψj,k(|rij − rk|)

)
dAk − (Ui − Uj) (A.2.8)
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Setting Ui = 0 and Ψi,j(|ri−rj|) = µiµj/(|ri−rj|2 +∆2)3/2 yields the Young-Laplace equation

with dipolar interaction (4.2.1).

A.2.2 Young’s equation

Plugging (A.2.7) in (A.2.5) directly yields the stability criteria for the contact point. Note

that the potentials Ψ and U don’t occur in this equation.(
λ23 − λ12 + λ13

y′√
1 + y′2

)∣∣∣∣∣
x=0

= 0

λ23 − λ12 − λ13 cos θ = 0, (A.2.9)

with the contact angle θ. Resolving for cos θ yields the Young-condition (6.2.1).

A.3 Line integral expression of dipolar energy and pres-

sure

It is

1

ρ3
= ∇1 ·

(r1 − r2)

∆(ρ + ∆)ρ
(A.3.1)

with ρ =
√
|r1 − r2|2 + ∆2. Application of Green’s theorem∫

A

∇ΦdA =

∮
∂A

nΦds, (A.3.2)

where Φ denotes an arbitrary potential, yields the line integral expression of the pressure

integral ∫
A1

dA1

ρ3
=

∫
∂A1

n1 ·
(r1 − r2)

∆(ρ + ∆)ρ
ds1. (A.3.3)

It holds

1

ρ3
= −∇1 · ∇2

ln(ρ + ∆)

∆
. (A.3.4)

Twice application of Green’s theorem (A.3.2) yields the line integral expression of the dipolar

energy ∫
A1

∫
A2

dA1dA2

ρ3
=

∫
∂A1

∫
∂A2

n1 · n2 ln(ρ + ∆)

∆
ds1ds2. (A.3.5)
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A.4 Scaling laws

A.4.1 shape invariant scaling

In the theoretical model a somewhat arbitrary distinction has been made between short range

interactions adsorbed into a bare line tension and long range dipole-dipole interactions taken

into account at length scales larger than the scale parameter ∆. The theory is constructed in

order to explain the macroscopic shapes of domains. If such a theory makes any sense, the

macroscopic shapes should not depend on the choice of scale parameter ∆ provided the typical

length scale of the macroscopic shapes (the radius of curvature of the shapes) is large com-

pared to ∆. For a meaningful theory there must exist a transformation from the microscopic

parameters λ, p, ∆ onto renormalized parameters λ∗, p∗, and ∆, where in terms of renormal-

ized parameters the shapes are functions of the renormalized parameters only and ∆ drops out

of the equations. If such a transformation would not exist, then all the macroscopic details

would depend on an arbitrary choice of the parameter ∆ making the theory meaningless.

Equilibrium shapes are determined by the Young Laplace equation, i.e. the shapes satisfy the

equation
δF

δrij(sij)
= 0 (A.4.1)

Now take an arbitrary not necessarily equilibrium shape rij(sij). Calculate the functional

derivative δF/δrij(sij). In the limit lim
κ∆→0

and in terms of renormalized quantities this func-

tional derivative should not depend on ∆, i.e.:

lim
κ∆→0

∂

∂∆

[(
δF

δrij(sij)

)
xn

]
λ∗ij ,p∗

= 0, (A.4.2)

Equation (A.4.2) is the renormalization group equation, defining (up to some constants) the

renormalized line tension and pressure. If it holds for any shape, so it does for an equilibrium

shape. Hence, if the functional derivative vanishes for a certain shape and set of bare param-

eters λ, p, and ∆, it does vanish on a whole one dimensional family of parameters defined

by λ∗(λ, p, ∆) =const and p∗(λ, p, ∆) =const. The shapes are independent of ∆ in terms

of renormalized quantities. Writing the functional derivative (Appendix A.2) using the line

integral expression of the dipole energy (Appendix A.3) yields:

δF

δrij(sij)
=

λijκij(sij)− pij +
∑
{kl}

µijµkl

Pkl∫
0

dskl
nkl · (rij − rkl)

∆(ρ + ∆)ρ

nij. (A.4.3)

(Compare with [54]). Making use of

1

∆(ρ + ∆)ρ
=

1

∆(rkl − rij)2
− 1

ρ(rkl − rij)2
(A.4.4)
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and the fact that

∇ · (r− r′)

(r− r′)2
= 2πδ(r− r′) (A.4.5)

(with the δ-function) and taking the derivative of (A.4.3) with respect to ∆ at fixed renor-

malized quantities results in

∂

∂∆

[(
δF

δrij(sij)

)
xn

]
λ∗ij ,p∗

= (A.4.6)

(∂λij

∂∆

)
λ∗ij

κij(sij)−
(

∂pij

∂∆

)
p∗
−

(µ2
i − µ2

j)π

∆2
+
∑
{kl}

µijµkl

Pkl∫
0

dskl
∆nkl · (rij − rkl)

(rij − rkl)2ρ3

nij.

The integral on the right hand side of (A.4.6) vanishes in the limit lim
κ∆→0

everywhere provided

(rij−rkl)
2 remains finite. The expression (rij−rkl)

2 only vanishes, if the ij boundary coincides

with the kl boundary i.e. if rkl(skl) = rij(s
′
ij) We may expand the expression

n′ij · (rij − r′ij)

(rij − r′ij)
2ρ3

(A.4.7)

around rij(sij) with the result:

n′ · (r− r′)

(r− r′)2ρ3
≈ (n− κ(s′ − s)t) · (−(s′ − s)t− κ/2(s′ − s)2n)

(s′ − s)2
√

(s′ − s)2 + ∆2
3

=
κ/2√

(s′ − s)2 + ∆2
3 (A.4.8)

Inserting (A.4.8) into (A.4.6) and taking the limit lim∆→0 results in

lim
κ∆→0

∂

∂∆

[(
δF

δrij(sij)

)
xn

]
λ∗ij ,p∗

=

(∂λij

∂∆

)
λ∗ij

κij(sij)−

∂(pij −
π(µ2

i−µ2
j )

∆
)

∂∆


p∗

+ lim
κ∆→0

µ2
ij

1∫
−1

ds
∆κij/2√
s2 + ∆2

3

nij.

=

(∂λij

∂∆

)
λ∗ij

κij(sij)−

∂(pij −
π(µ2

i−µ2
j )

∆
)

∂∆


p∗

+
κijµ

2
ij

∆

nij.

=

(∂(λij − µ2
ij ln
√

A/∆)

∂∆

)
λ∗ij

κij(sij)−

∂(pij −
π(µ2

i−µ2
j )

∆
)

∂∆


p∗

nij. (A.4.9)

If this expression should vanish for any shape defined by κij as required by (A.4.2) both

partial derivatives in the last line of (A.4.9) must vanish individually. It is easy to see, that

the definitions:

λ∗ij = λij − µ2
ij ln

√
A

∆
(A.4.10)
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and

p∗ = p−
(µ2

i − µ2
j)π

∆
(A.4.11)

satisfy the renormalization group equation (A.4.2). A change in ∆ at constant renormalized

quantities does not change the shape. From this it follows directly, that (4.3.1) is a shape

invariant scale transformation. The shape invariance strictly holds only in the limit lim
κ∆→0

.

At finite ∆ the shape changes when performing a shape invariant scale transfromation. The

changes are most pronounced in regions, where the curvature of the shape boundary is large

(near the three phase contact points), while far away from divergencies in the curvature the

shape invariance still holds to a very good approximation.

A.4.2 contact angle invariant scaling

In Appendix A.2.2 we have shown that the boundary condition at the three phase contact

point satisfies Young’s condition with the bare line tensions. Expressing Young’s equation in

terms of renormalized line tensions leads to an equation which is not independent of ∆. The

functional derivative of the free energy with respect to the intersection points satisfies:

∂

∂∆

[(
δF

δxn

)
r(s)

]
λij

= 0, (A.4.12)

i.e. the contact point stability is invariant at fixed bare line tensions, not at fixed renormalized

line tensions. The derivation of (A.4.12) from (6.2.1) is trivial. As a consequence of this the

total variation of the free energy cannot satisfy a renormalization group equation of the kind

lim
κ∆→0

∂

∂∆
[δF ]λ∗∗ij ,p∗∗ = 0, (A.4.13)

Therefore the entire monolayer structure depends on all three parameters λ, ∆ and p. It

is the boundary condition at the three phase intersection point, where ∆ reenters into the

renormalized equations. This does not render the theory meaningless, as the stability condition

at the contact point is clearly a microscopic condition, even if in the current frame it is

an equation somewhat extrapolated from the macroscopic concept of infinitely sharp phase

boundaries. Ultimately, when the dipole-dipole interaction really dominates, all droplets must

dewet the phase boundaries, such that no three phase intersection points exist, and the pattern

becomes completely shape invariant under shape invariant scale transformations. For the

pendant droplet in the current paper a droplet exceeding a maximum size must disjoin into

a small droplet partially wetting the LC-wall and a second disjoined droplet, detaching from

the wall. Indeed the droplet of size A = 8.9 ∗ 10−10m2 is the largest partially wetting droplet

observed in the monolayer ever, while LE-droplets of larger size are observed frequently inside

the gaseous phase.
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A.5 Foam energy minimization

Since ∂
∂A

AN

∣∣∣∣∣
Φ

= ∂
∂A

AtotalΦ

∣∣∣∣∣
Φ

= 0 the equilibrium condition (5.1.3) corresponds to minimizing

the function F ∗

∂F ∗

∂A

∣∣∣∣∣
Φ,∆,λ,µ2

= 0, where F ∗ =
F − F0

AN
− µ2π

∆
. (A.5.1)

It has been shown by de Koker and McConnell [40] that F ∗ is invariant to shape invariant

scaling transformation and so - similar to r - it can be expressed in the form:

F ∗(λ, µ2, ∆, A, Φ) =
µ2

√
A

F̃ ∗(λ̃∗, Φ), (A.5.2)

with the dimensionless F̃ ∗.

With ∂λ̃∗/∂A = −1/(2A) one finds (5.1.4), which determines a relation between the interaction

parameter λ̃∗ and the area fraction Φ. We express the solution of equation (5.1.4) in the form:

λ̃∗ = λ̃∗0 − Y (Φ), (A.5.3)

with λ̃∗0 defined in (5.1.7). Using the definition of λ̃∗ (5.1.1) yields equation (5.1.6).

For numerical minimization we used the expression

F̃ = −1

2

∮
central domain
boundary

∮
all domain

boundaries

ds̃ · ds̃′√
(r̃− r̃′)2 + ∆2/A

+ (λ/µ2 − 1)

∮
central domain
boundary

ds̃, (A.5.4)

where the integration over s (s′) is performed along the interface of the central domain (all

domains). We fixed without loss of generality
√

A/∆ = 100. A Newton procedure has been

used in order to solve equation (5.1.4). The accuracy of the calculated interaction parameter

λ̃∗ is about ±0.01.

A.6 Numerical solution of the Young-Laplace-equation

for an ideal foam

The procedure is similar to the numerical solution of the Young-Laplace-equation for a pendant

droplet on a wall described in appendix A.7. In contrast to that a C6v symmetry is included

in the Young-Laplace-equation. The shape of the bubble is described by r(s), where s is the

arc length with values between 0 and the perimeter P . It is chosen in a way such that r(0)

points to an edge of the bubble.



A.7 Numerical solution of the Young-Laplace-equation for a pendant droplet 85

Further we use a damped iteration method instead of normal iteration in appendix A.7:

κn+1(s) = (1− q)κn(s) + q

(
2π

P
− µ2

λ
δIn(s)

)
, with (A.6.1)

δIn(s) = In(s)− 12

P

P/12∫
0

ds′In(s′), with (A.6.2)

In(s) = −12
∑

i=all bubbles

P/12∫
0

ds′
n′n · (rn − r′n)

(rn − r′n)2ρn

, (A.6.3)

where n denotes the iteration step and 0 < q ≤ 1 the damping factor. The choice of q = 0.5

showed best results.

The curvature κn+1(s) determines the shape rn+1(s) and the interaction integral δIn+1(s) also

described in appendix A.7. As in appendix A.7 the perimeter P is replaced by the bubble area

Ã by application of a regula falsi iteration. The procedure is repeated until the bubble area

Ã equals 1 with sufficient precision. As a result we obtain the bubble shape r̃(s) as function

of the dimensionless parameters ( λ/µ2, ∆/
√

A, Φ), where
√

A/∆ = 100 is kept fixed.

The arc-segment is discretized by 100 sampling points, i.e. 1200 sampling points for the whole

domain. So ∆ is larger than the numerical step width and smaller than the curvature radius

(ds < ∆ < κ−1
min), a necessary condition for the validity of the scaling law and equation (5.1.1).

A.7 Numerical solution of the Young-Laplace-equation

for a pendant droplet

Finding theoretical equilibrium droplet shapes is equivalent to finding solutions of the Young-

Laplace equation (4.2.1) and Young’s-condition (6.2.1). These two equations define a nonlinear

set of integro differential equations and are solved numerically. The calculation time can

be reduced drastically if the line integral expression (A.3.3) instead of the surface integral

representation in (4.2.1) is used. For further use we transform (A.3.3) in order to remove the

divergency in the integral. We drop the subscripts characterizing the position, tangent vector,

normal vector, arc length and curvature of the LE/G boundary. Then we multiply the line

integral expression of (4.2.1) with [δ(s− s′)− 1
P
] and integrate over the entire LE/G-interface

to obtain:

λLE/G

(
κ(s′)− 2θ

P

)
+
∑
{kl}

µLE/Gµkl

P∫
0

ds

Pkl∫
0

dskl

[
δ(s− s′)− 1

P

]
nkl · (r− rkl)

∆(ρ + ∆)ρ
= 0. (A.7.1)

where we have made use of κ = dφ/ds with φ the angle of the tangent vector with respect to

some reference direction. Also the total angular change in orientation of the LE/G-interface
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equals twice the contact angle θ with the LC-boundary. Collecting the terms in equation

(A.7.1) proportional to µLE/G and to µLC/G we might rewrite it as (using (4.4.7,4.4.8)):

κ(s) =
2θ

P
− µ̃

λ̃LE/G

δILE(s)− 1

λ̃LE/G

δILC(s). (A.7.2)

The scale parameter ∆ is chosen in the order of µm, such that its product with the curvature

remains small ∆κ� 1, but larger than the numerical integration step width ds.

The self interaction integral ILE is defined by:

ILE(s) = −
∮

∂ALE

ds′
n′ · (r− r′)

(r− r′)2ρ
, (A.7.3)

where we have made use of∮
∂ALE

ds′
n′ · (r− r′)

∆(ρ + ∆)ρ
=

π

∆
−
∮

∂ALE

ds′
n′ · (r− r′)

(r− r′)2ρ
. (A.7.4)

The LC droplet interaction integral ILC reads:

ILC(s) =

∫
half plane

dA′

ρ3

=
2

∆
arccot

−nLC · (r− rLC)

∆
(A.7.5)

Here nLC is the inward normal to the LC-half plane and rLC lies on the LC-interface. The

integrals δILE(s) and δILC(s) are defined via:

δIj(s) = Ij(s)−
1

P

P∫
0

ds′Ij(s
′) (A.7.6)

The simplest procedure to resolve the integro differential equation (A.7.2) is to iterate it in

the form

κn+1(s) =
2θ

P
− µ̃

λ̃LE/G

δILE,n(s)−
1

λ̃LE/G

δILC,n(s), (A.7.7)

and integrate to the new shape

φn+1(s) = φ0 +

s∫
0

ds′κn+1(s
′), (A.7.8)

tn+1(s) =

(
cos φn+1(s)

sin φn+1(s)

)
, (A.7.9)

rn+1(s) =

s∫
0

ds′tn+1(s
′), (A.7.10)

nn+1(s) =

(
0 −1

1 0

)
tn+1(s), (A.7.11)
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where n denotes the iteration step. If the procedure is converging during iteration the shape rn

is approaching the final shape r∞ fulfilling the Young-Laplace-equation (A.7.2). The perimeter

P of the LE/G droplet interface is conserved during this procedure.

The iteration procedure showed good convergence in a large range of parameters. Starting for

instance with κ0(s) = const. (circle) repeated application of equations (A.7.8-A.7.11), (A.7.3),

and (A.7.5-A.7.7) may lead to shapes fulfilling equation (A.7.2) for a given set (µ̃, λ̃LE/G, ∆,

P , θ). The iteration procedure was successful for sufficiently small droplet areas. Droplets in

a parameter range where shape instabilities occur did not converge.

In order to replace the perimeter P by the droplet area

A = −1

2

∮
∂ALE

ds r · n , (A.7.12)

we applied a regula falsi iteration, i.e. the converged droplet r(s) is rescaled to the target area

A0. The new droplet is taken as initial droplet for another droplet shape iteration:

r̃(s̃) = γr (s̃/γ) , (A.7.13)

where

γ =

√
A0

A
, (A.7.14)

and s̃ ranges from 0 to P̃ = γP . The procedure is repeated until the droplet area A equals

A0 with sufficient precision. As a result we obtain the droplet shape r(s) with perimeter P as

function of the parameters µ̃, λ̃LE/G, ∆/
√

A, and θ.

The renormalized pressure is given by:

p∗ =
µLE/GµLC/G

P

θλ̃ +
µ̃

2

P∫
0

dsILE(s) +
1

2

P∫
0

dsILC(s)

 (A.7.15)

The renormalized pressure coincides with the left hand side in equations (6.2.5) and (6.2.6).

A.8 Lower limit for phase specific cut-off lengths ∆i

The Young-equation has only a solution if

cos θ =
λLC/G − λLC/LE

λLE/G

≤ 1. (A.8.1)

Plugging the general scaling law for the line tension

λij,2 = λij,1 − µiµij ln
∆i,2

∆i,1

+ µjµij ln
∆j,2

∆j,1

. (A.8.2)
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into the Young-condition 6.2.1 yields

λ1µm
LC/G − λ1µm

LC/LE − µLC/G

(
µLC ln

∆LC

1µm
− µG ln

∆G

1µm

)
+ µLC/LE

(
µLC ln

∆LC

1µm
− µLE ln

∆LE

1µm

)
≤ λLE/G − µLE/G

(
µLE ln

∆LE

1µm
− µG ln

∆G

1µm

)
Collecting the terms and rearrange them leads to

λ1µm
LC/G−λ1µm

LC/LE−λ1µm
LE/G−µLC ln

∆LC

1µm
µLE/G+µG ln

∆G

1µm
µLC/LE+µLE ln

∆LE

1µm
(µLE/G−µLC/G) ≤ 0

(A.8.3)

Plugging in the experimental values for the line tensions λ1µm
LE/G = 0.32 pN and λ1µm

LC/G−λ1µm
LC/LE =

0.094 pN as well as µLE = 2.85× 10−7
√

N, µG = 1.19× 10−7
√

N and µLC = 5.94× 10−7
√

N in

this inequation yields:

• the smaller ∆G the smaller the left hand side of the inequation

• the bigger ∆LE the smaller the left hand side of the inequation

• the bigger ∆LC the smaller the left hand side of the inequation

If ∆LE = ∆LC = 10 nm are set to their maximum acceptable value within the interpretation

as length scale of van-der-Waals interaction then ∆G has to be smaller than 0.1Å in order to

obtain a real contact angle. The wetting cannot be explained with phase specific ∆i in the

range of some Å to several nm.

A.9 Mass action law for monomer-cluster reaction con-

sidering entropy in the cluster size

Consider Ng gas molecules in chemical equilibrium with Nc clusters of the average aggregation

number 〈n〉. The total number of molecules shall be conserved

N = 〈n〉Nc + Ng. (A.9.1)

The size of the clusters shall be variable (≥ 1) and the binding energy per molecule ε in a

cluster shall be a constant. In real systems clusters smaller than the critical nucleation radius

are not stable. The entropy in the model is a bit bigger than in real systems and gives an upper

limit of the effect. The entropy from the cluster-arrangement is proportional to the logarithm

of the number of micro states realizing the macro state of Nc clusters made of 〈n〉Nc molecules
1. Throw Nc − 1 cuts (without recurrence) on the 〈n〉Nc − 1 ’cutting places’. Since the cuts

1Calculation: Number the clusters from 1 to Nc and the molecules used for the cluster formation from 1

to 〈n〉Nc
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and the cutting places are not distinguishable there exist 〈n〉Nc − 1 over Nc − 1 possibilities.

Distribute the molecule pieces on the clusters according to their number.

Sc = k ln
(〈n〉Nc − 1)!

(〈n〉Nc −Nc)!(Nc − 1)!
(A.9.2)

≈ k((〈n〉Nc − 1) ln(〈n〉Nc − 1)− (〈n〉 − 1)Nc ln((〈n〉 − 1)Nc)− (Nc − 1) ln((〈n〉 − 1)Nc)),

where the Stirling formula is used in order to obtain the approximation valid for large numbers

Nc � 10. The equation can be simplified and one finds for large Nc

Sc = kNc ln
〈n〉〈n〉

(〈n〉 − 1)〈n〉−1
(A.9.3)

So the total free energy of the system is the sum of the binding energy, the entropy of the

unbound gas molecules (assumed is ideal mixing), the mixing entropy of the cluster-location

points and the entropy arising from the cluster size:

F = 〈n〉Ncε−NgkT ln Cg −NckT ln Cc + TSc, (A.9.4)

where Cg denotes the concentration of gas molecules (number of molecules per unit area) and

Cc denotes the concentration of clusters. In thermodynamic equilibrium the partial derivative

of the free energy with respect to the number of clusters vanishes

∂F

∂Nc

= 0. (A.9.5)

Solving this equation leads to an equation similar to the mass action law

(〈n〉−1)〈n〉−1

〈n〉〈n〉 Cc

C
〈n〉
g

= K(ε, 〈n〉, T ), (A.9.6)

where K is the equilibrium constant depending on materials parameters and the temperature

T . The coefficient (〈n〉)〈n〉−1

〈n〉〈n〉 is a materials constant and can be absorbed by the equilibrium

constant
Cc

C
〈n〉
g

= K ′(ε, 〈n〉). (A.9.7)

Ergo: the variety in size of the clusters has no effect on the shape of the isotherm except in a

change of the equilibrium constant.

A.10 Monolayer isotherm with impurity

Using equation (8.5.3) the fraction of substance and impurity in the liquid phase can be

expressed in terms of c∗, π0, π
∗
0, αl and Φ:

Φl =
αlπ

∗
0Φ + 1− Φ

c∗(αlπ0Φ + 1− Φ) + αlπ∗0Φ + 1− Φ
(A.10.1)
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Using then equations (8.5.1) one can calculate the pressures π, π∗ and πtotal = π + π∗. One

finds for the molecular area

α =
1

αlπΦ + Φl(1− Φ)
. (A.10.2)

A.11 Software

This appendix contains special information on the software and is addressed especially to

future group members.

A.11.1 Manual

On the whole the controlling software is self-explanatory. In the corners measured values

as well as date and time are shown (figure A.11.1). The up/down buttons in the lower left

allow the manipulation of the target area. Clicking the checkmark starts the motion, another

mouse click on the same button stops the motion. The velocity of barrier movement can be

manipulated by the up/down buttons in the lower right. The menu-button in the upper right

opens another window where the concentration and spread volume of the used sample can be

entered (needed for the calculation of molecular area) and calibration of area and pressure can

be performed. The program can be stopped by clicking on the cross button in the upper right.

The input line on the bottom allows to add comments also visible on the recorded video tape.

A.11.2 Multimeters

Two multimeters (METEX-22, Digitek DT-4000ZC) purchased from Conrad electronics with

RS-232 interface were used. The data transfer and interpretation has been implemented in

Delphi using the component ’CommPortDriver’ downloaded from the world wide web (www)

[128]. The provided manual of the METEX-22 contains all relevant information on the data

format. The transfer parameter have to be set to the following values:

2400 baud transfer rate

7-bit ASCII data format

no parity

2 stop bits

In order to start the data transfer from the PC a letter ’D’ has to be sent.

The manual of the Digitek DT-4000ZC does not contain a description of the data format. The

information was got from the www [129]: The multimeter always sends data if the RS232-

button on the multimeter is activated. So here it is not necessary to send a request from the
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Figure A.11.1: Screenshot of the film balance control software. The computer image and flu-

orescence image from the SIT camera (positioned in the center) are overlaid by a Genlock

adapter. Upper left corner: date and time. Upper right corner: area per molecule, surface

pressure, temperature. Lower left corner: actual area and target area. Lower right corner:

barrier velocity.

PC. The information of all display segments is encoded in 14 data bytes which are allways

repeated. The transfer parameter have to be set to

2400 baud transfer rate

8 data bits

no parity

one stop bit.

The higher order half byte contains the number of the byte (1-14) and the lower order half

byte contains the information of the display segments as listed in the table (the number in the

first row is the number of the byte).

1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14.

20 RS232 a1 a2 b1 b2 c1 c2 d1 d2 Dio Sound Hold Bat

21 Auto a6 a7 b6 b7 c6 c7 d6 d7 K M ∆ Hz HFE

22 DC a5 a3 b5 b3 c5 c3 d5 d3 n % Ω V ◦C

23 AC S a4 p1 b4 p2 c4 p3 d4 µ m F A

The denotation of the display segments is shown in figure A.11.2.



92

Figure A.11.2: Denotation of display segments.

A.11.3 Stepper motors

The stepper motors are controlled by a PC card from PI. The procedures and functions are

in the unit ’motorctrl.pas’ which uses a DLL file provided by PI. Additionally to the provided

procedures and functions well described in the manual the following procedures and functions

were added:

• function motorsteuerung init:integer

Call this procedure in the beginning of the program. The procedure reads the position

of the barriers from hard disc and initializes the motor control card. Before break up

of the program the positions of the barriers have to be saved. Declare f:textfile;

l1,l2:longint and use the following code:

set vel(1,0); set vel(2,0);

assignfile(f,’parameter.dat’);

rewrite(f);

l1:=get pos(1); l2:=get pos(2);

writeln(f,inttostr(l1));

writeln(f,inttostr(l2));

closefile(f);

The function returns an error code, the value is 0 if no error occurred.

• function postoflaeche(pos1,pos2:longint):extended;

Converts motor counts in the corresponding area between the barriers (in cm2). The

variables pos1 and pos2 are the positions of the motors in counts.

• procedure flaecheeinstellen(fl:extended);

Starts the motion of the barriers to the target area fl (in cm2). If the target area is

reached then the motion stops. The velocity of the motion is set with the procedure

set vel.
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• procedure area calibration;

Sets the velocity to the standard calibration value. Then moves the barriers to maximum

area (until they touch the limit switches). This area is taken as the standard maximum

area. Parameters of the film balance are saved in the file ’einstellungen.dat’. To read

them out use the code:

assignfile(f,’einstellungen.dat’);

reset(f);

readln(f,s);

maximalflaeche:=strtofloat(s);

readln(f,s);

minimalflaeche:=strtofloat(s);

readln(f,s);

maximum counts:=strtoint(s);

readln(f,s);

flaeche pro count:=strtofloat(s);

closefile(f);

where f:textfile; s:string; maximalflaeche,minimalflaeche:extended (maximum

area and minimum area in cm2); maximum counts:longint (corresponding number of

counts between maximum and minimum area); flaeche pro count (area per count in

cm2/count).

Note: If the program is interrupted in another way than by clicking the cross-button the area

has to be calibrated again.
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[3] M. Lösche, E. Sackmann, and H. Möhwald. A fluorescence microscopic study concerning

the phase diagram of phospholipids. Ber. Bunsenge,Phys. Chem., 87:848–852, 1983.

[4] H. M. McConnell, L. K. Tamm, and R. M. Weis. Periodic structures in lipid monolayer

phases transitions. Proc. Natl. Acad. Sci. (USA), 81:3249–3253, 1984.

[5] D. Hönig and D. Möbius. Direct visualization of monolayers at the air-water interface

by Brewster angle microscopy. J. Phys. Chem., 95:4590–4592, 1991.
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chain phophatidylcholines as substrates for phospholipases. Coll. Surf., 171:97–103,

2000.

[97] G. H. Peters, U. Dahmen-Levison, K. de Meijere, G. Brezesinski, S. Toxvaerd,
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Thesen v

Thesen

1. In idealen2 2D Phasenkoexistenzgebieten mit dipolarer Wechselwirkung erfüllen Phasen-

grenzen im Gleichgewicht die 2D Young-Laplace-Gleichung. Zusätzlich zur 3D Young-

Laplace-Gleichung enthält diese einen Term für den elektrostatischen Druck.

2. Kontaktwinkel in den genannten Systemen folgen der Young-Bedingung und sind eine

Materialeigenschaft des Systems. Die These wurde durch Experimente in einer

Stearinsäuremethylester-Monolage (SME-Monolage) bestätigt.

3. Die Auswertung der Form experimenteller 2D Tropfen erlaubt die Messung von Li-

nienspannung durch hängende-Tropfen-Tensiometrie und wurde in einer SME-Monolage

durchgeführt.

4. Hexagonale monodisperse 2D Schäume mit dipolarer Wechselwirkung haben universelle

Blasenformen, die nur vom Phasenanteil aber nicht von Materialparametern abhängen.

5. Die Blasengröße in diesen Schäumen wird durch eine ebenfalls universelle Größenfunktion

in Einheiten der Gleichgewichtsgröße einer isolierten Blase beschrieben.

6. Sowohl ideale als auch experimentelle 2D Schäume mit repulsiver Dipolwechselwirkung

trocknen (=Verformung der Blasen bezüglich der Kreisform) bei kleineren Phasenan-

teilen der Blasenphase als Schäume ohne langreichweitige Wechselwirkung.

7. Die Cut-off-Länge der dipolaren Wechselwirkung in SME-Monolage ist größer als 0.1 µm.

Der Autor schlägt eine Interpretation als dipolare Korrelationslänge an der Phasengrenze

vor.

8. Dipolwechselwirkung von benetzenden 2D Tropfen mit dem 2D Substrat stabilisiert die

Tropfen bezüglich Formbifurkationen.

9. Eine Kontrolle des Benetzungsverhaltens der Phasen einer Phospholipid enthaltenden

Langmuir-Monolage durch enzymatische Hydrolyse ist prinzipiell möglich.

10. Eine biologische Relevanz dieser Kontrolle des Benetzungsverhalten zur Steuerung der

Reaktionskinetik in biologischen Membranen kann vermutet werden.

11. Die wahrscheinlichste Erklärung für die (auch in der Literatur oft reproduzierte) schein-

bare Verletzung der Gibbs’schen Phasenregel in Langmuir-Monolagen sind Verunreini-

gungen während Erklärungen, die auf finite-size-Effekten oder dem Einfluss der lang-

reichweitgigen Wechselwirkung beruhen, eher unwahrscheinlich sind.

22D Phasen im Sinne Gibbs’


