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Où finit le télescope,     Where the telescope ends,  

le microscope commence.    the microscope begins. 
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Abstract 

Dynamic self-assembly represent one of the most powerful tools in Nature to 

spontaneously organize a system on a hierarchy of different scales. Most of the 

processes at the nano/micro scale occur at very low Reynold’s number where inertia 

can be neglected. Creeping flow magnetic systems can be characterized by the Mason 

number. The Mason number measures the ratio between the viscous and the magnetic 

torque and is the main parameter governing the behavior of paramagnetic colloids 

investigated in this thesis. The work presented in this thesis explores new dynamic 

regimes of colloidal dynamics which occur when suddenly switching to high Mason 

numbers.  

In a static magnetic field the equilibrium structure of paramagnetic colloids are 

chains. At high Mason number in a rotating magnetic field the time averaged 

equilibrium conformation is a two dimensional cluster. By switching from a static to a 

rotating magnetic external field, we cause a transient dynamics from a static to the 

dynamic equilibrium state. The first question addressed in this thesis is: what is the 

physics that determines the transient folding pathway from one to the other equilibrium 

state? 

Dynamic magnetic fields were used by others to propel top down DNA-linked 

chains of paramagnetic colloids in a liquid. The second question asked is whether we 

can dynamically self assemble swimmers taking a fully bottom up approach? The third 

question is: is it possible to assemble more complex dynamic patterns that lead to 

motion of the swimmers governed by more collective coupled hydrodynamics that goes 

beyond slender body theory of the linked chains? 

This thesis answers the three questions and contributes to the understanding of 

colloidal dynamics and self assembly in dynamic magnetic fields in the regime of high 

Mason numbers. We explore two aspects of the dynamic self assembly i.e. the transient 

kinetics between two dynamic self-assembled equilibria and the dynamically self 

assembled propulsion of magnetic swimmers beyond slender body hydrodynamics. The 

thesis therefore aims at achieving magnetic control over the assembly of complex 

dynamic colloidal structures. 
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Ausgangsfragestellung 

Die dynamische Selbstassemblierung ist eines der effektivsten Konzepte, die 

in der Natur zur spontanen Organisation hierarchischer, sich über verschiedene 

Längenskalen erstreckender, Strukturen führt. Viele Prozesse, welche auf 

nanoskopischen oder mikroskopischen Längenskalen ablaufen, können durch sehr 

kleine Reynoldszahlen charakterisiert werden, so dass die Trägheit keine Rolle für den 

physikalischen Mechanismus spielt. Kriechender Fluss magnetischer Systeme kann 

deshalb durch eine einzige dimensionslose Größe, die Mason Zahl, charakterisiert 

werden, die das Verhältnis zwischen viskosen und magnetischen Drehmomenten misst. 

Sie bestimmt das physikalische Verhalten in dieser Arbeit untersuchter 

paramagnetischer Kolloide. Die vorliegende Arbeit untersucht neue dynamische 

Regionen der kolloidalen Dynamik, welche dadurch erschlossen werden, dass das 

ursprünglich bei niedrigen Masonzahlen vorliegende System abrupt hohen 

Masonzahlen ausgesetzt wird. 

Die Gleichgewichtskonformation paramagnetischer Kolloide in einem 

statischen Feld besteht aus Kolloidketten. Bei hohen Masonzahlen, in einem 

dynamischen Magnetfeld ist die zeitgemittelte Gleichgewichtsstruktur ein 

zweidimensionaler Cluster. Durch das plötzliche Umschalten von einem statischen zu 

einem rotierenden Magnetfeld wird eine transiente Dynamik zwischen beiden 

Gleichgewichtskonformationen verursacht. Die erste mit dieser Arbeit untersuchte 

Frage ist: welche physikalischen Mechanismen bestimmen den transienten 

Faltungspfad von der einen zur anderen Gleichgewichtskonformation? 

Dynamische Magnetfelder wurden von anderen Gruppen dazu benutzt DNS-

verknüpfte paramagnetische Kolloidketten in einer Flüssigkeit schwimmen zu lassen. 

Die zweite, in dieser Arbeit untersuchte Frage lautet: Ist es auch möglich einen 

mikroskopischen Schwimmer aus seinen Einzelteilen mit einem bottom up Ansatz 

dynamisch selbst zu assemblieren? Die dritte in dieser Arbeit zu klärende Frage ist: 

Lassen sich komplexere Muster dynamisch selbst assemblieren, die zu einer 

Schwimmbewegung führen, welche über eine hydrodynamische ungekoppelte Theorie 

schlanker Körper hinausgeht und eine Beschreibung mittels kollektiv gekoppelter 

Hydrodynamik zwischen den Einzelteilen notwendig macht? 
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Die vorliegende Dissertation beantwortet die drei Fragen und trägt zum Ver-

ständnis der kolloidalen Dynamik der Selbstassemblierung in zeitabhängigen Magnet-

feldern bei hohen Masonzahlen bei. Es werden zwei Aspekte der dynamischen Selbst-

assemblierung: zum einen die transiente Kinetik zwischen zwei dynamisch selbst as-

semblierten Gleichgewichtskonformationen, zum anderen die dynamisch selbst 

assemblierte Vorwärtsbewegung eines magnetischen nicht schlanken Schwimmers, 

untersucht. Das mit dieser Arbeit verfolgte Ziel ist die magnetische Kontrolle über die 

Assemblierung komplexer kolloidaler Strukturen.  
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1 General introduction 
In the past few decades we have been confronted with a general trend of 

miniaturization. Such a trend is observed in many products, including computer chips, 

transistors, targeted drug delivery, microstirrers and microchannels. To achieve 

continued miniaturization, scientists and engineers search for a solution to problems 

they encounter and try to explain physical behavior at micro- and nano-scales where 

systems have rather different behavior to those observed in the macroscopic world. One 

of the key problems encountered with extreme miniaturization is finding tools and 

skills that can assemble components at the micro and nanometer scale. Because of the 

limitation that, today’s available engineering skills and tools experience when they are 

confronted with the systems that are in micrometer and nanometer range, it is necessary 

to find new approach for this range of sizes. To solve this problem science and 

engineering are searching for a new approach and ideas that can organize and build 

systems even on these small scales. One of the commonly used, relatively simple, 

modeling systems for some more complex interactions are colloidal suspensions. Like 

so many times in the past, possible solutions to engineering problems can be found in 

nature. Nature has one very efficient tool for building and organizing living and non-

living things called self-assembly. Self assembly is the way in which Nature organizes 

parts from atomic up to galactic scales. Living cells are self-assembled systems. Self-

assembly can be one of the practical ways to realize ensembles of nanostructures and 

further the progress of nanotechnology and robotics. Self-assembly can be used for 

dynamic, multicomponent systems, smart materials, self-healing structures up to netted 

sensors, pattern bridges and computer networks [57]. 

Soft matter systems such as polymers and colloidal suspensions can serve as a 

simple model for research on self-assembled systems. Colloidal suspensions are 

mesoscopic systems, where complex structures and dynamics resulting from simple and 

tunable interactions between individual particles can be studied in real space. 

Paramagnetic particles, which can be produced in a wide range of sizes and can carry 

different functional groups, in a combination with external magnetic, electric or optical 

field parallel to x and/or y and/or z-axis can be very powerful tools in the attempt to 

realize simple but functional self-assembled systems. Uniaxial magnetic fields (static 

and dynamic) will induce a magnetic moment in paramagnetic particles which will lead 

to the self-assembly mainly driven by head-to-tail interaction. As the result of this 
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interaction particles become organized into chain-like structures. Biaxial fields, created 

by combining two orthogonal alternating magnetic fields with the same frequency but 

with π/2 phase shift with respect to each other can lead to net attractive interactions in 

a plane. This attraction will result in a dynamic self-assembly of aggregated structures 

which can include crystal clusters, sheet-like structures, networks and membranes. 

Triaxial magnetic fields, which represent the combination of three orthogonal magnetic 

fields, where at least two must vary in time, can lead to even more complex structures 

and interactions [58, 59]. 

Self-assembled systems can be used as devices to measure intra-cell viscosity 

for the viscosity measuring in the cells, as micro mixers, membranes, or for targeted 

drug delivery amongst other uses. In the last decade there has been growing interest in 

developing propelling systems using paramagnetic particles. For this purpose scientists 

have created dynamic self-assembled systems in the bulk and also at the interface 

(liquid-liquid and liquid-air respectively). In both cases spontaneous symmetry 

breaking leads to propulsion in self-assembled systems [58]. Paramagnetic particles can 

be connected to DNA or some polymer linkages resulting in flexible structures which 

can then be further manipulated with magnetic fields or with optical tweezers [18, 60]. 

Magnetic interactions are not screened in solution which gives them an advantage 

compared to electric interactions [59]. 

Understanding the principles of self-assembly, both static and dynamics, is vital 

for the continued development of synthetic tools to manipulate organic and inorganic 

building-blocks over several length scales. Self-assembly can help to create novel kinds 

of integrated biological, physical and chemical systems in nanotechnology [58]. The 

variety of the shapes can also contribute to a better understanding of self-assembly 

[61].  

Driven by the desire to obtain a deeper understanding of dynamic self-assembly, 

we have performed and presented experimental work using micrometer-size 

paramagnetic particles which were self-assembled in biaxial and triaxial magnetic 

fields.  

In Chapter 2 I have presented an overview of work on similar systems to the one 

that I have used. Here one can find results from different researchers studying systems 

where the Mason number (𝑀𝑛)(defined in Chapter 3.4) is very small or ≥ 1, and a 

summary of different systems able to achieve propulsion. Chapter 3 provides insights 

into the theoretical concepts used to perform and explain experimental results. Here we 
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also give an explanation of the numerical and simulation methods used during the work 

presented in this thesis. In Chapter 4 I have briefly described experimental setup and 

the external field configuration. Chapter 5 details the experiments performed in this 

thesis with explanations of the observed phenomena. In Chapter 6 I have extended the 

experimental setup shown in Chapter 4 and describe in more detail materials and 

methods used to obtained experimental results presented in Chapter 5. Finally I have 

summarized our results in Chapter 7. Chapter 8 gives an overview of the literature.
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2 Introduction and 

background 

2.1 Dynamic self-assembly 

Keeping in mind the breadth of the different branches of today’s scientific 

research in many areas, including multidisciplinary endeavours incorporating aspects of 

biology, chemistry, physics etc. one can pose the question: what is self-assembly? 

Alternatively, considering the fact that self-assembly plays a role in different processes 

from the molecular level up to the scale of planets and galaxies one can pose the 

opposite question: what is not self-assembly? 

Assembly is defined in the Merriam-Webster’s Dictionary as the process of 

“fitting together of manufactured parts into a complete machine, structure, or unit of a 

machine [62]. B. A. Grzybowski et al. propose the following definition of self-

assembly: “Self-assembly is the spontaneous formation of organized structures from 

many discrete components that interact with one another directly (e.g., by electrostatic 

repulsions) and/or indirectly, through their environment (e.g., magnetohydrodynamic 

SA)” [63]. 

As we can see from the definition of assembly the emphasis is on “fitting 

together” and “parts” and self-assembly points to autonomous organization (they put 

themselves together) of these “parts” (basic building blocks) into the patterns or 

structures without direction by an external influence (i.e. without human intervention). 

The principles of self-assembly are very ingrained throughout nature and technology 

and can involve components from the molecular to the planetary scale. Many different 

kinds of interactions are involved in self-assembly [63, 64].  

Self-assembly can be divided in two main categories: static and dynamic self-

assembly (examples for different types of self-assembly are shown in Table 1.). In 

general, the distinction between the two types can be made on the basis of energy 

dissipation and equilibrium state. Static self-assembly (SSA) systems do not dissipate 

energy and have achieved global or local equilibrium. This refers only to the final self-

assembled structure. In fact, to achieve static self-assembly one must drive the system 

away from equilibrium by supplying (externally) energy to the system in order to 
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generate stable structures. These structures are then characterized by zero entropy 

production. Examples of static self-assembled systems are molecular crystals, globular 

proteins, quasi-crystals, lipid bilayers, pairing of bases, folding of some proteins etc. To 

form these ordered structures by static self-assembly may require energy, but once the 

structures are formed they remain stable and do not dissipate the energy. In other 

words, structures made by static self-assembly cannot be further adjusted/reconfigured 

and it is not possible to change their function even if there is a change in external 

conditions. In this way they can be defined as “crystals,” and not as “cells” [65]. 

In contrast to static self-assembly, the formation of ordered structures or 

patterns between components by dynamic self-assembly (DySa) requires that the 

system is dissipating energy. Once the flow of energy ceases structures will collapse 

and be disassembled (“die”). Since dynamic self-assembly takes place in a non-

equilibrium regime the law of entropy maximization is not valid. As a result, 

dynamically self-assembled systems can dwell in a low entropy state in which they can 

be often characterized by complex spatial or coherent spatio-temporal organization. 

This feature enables the self-assembly system to be systematically designed and 

controlled by dissipative interactions (by continuous supply of energy to the system) 

[63]. Examples of dynamically self-assembled systems are compositional patterns 

formed by competition between reaction and diffusion in oscillating chemical reactions, 

biological cells, behavior of actin filaments, histones and chromatin, 

magnetorheological fluids, electrorheological fluids, magnetohydrodynamic self-

assembly Rayleigh-Bernard convection cells, patterns that form in fluidized beds of 

particles etc. The majority of today’s research in self-assembly has focused on the 

understanding and examination of static self-assembly, but the greatest opportunities 

and challenges lie in studying dynamic self-assembly.  

In Figure 2.1 we show schematically the principal difference between static 

and dynamic self-assembly. Static self-assembly will organize in the way that is 

necessary to minimise the thermodynamic potential. During the process of structure 

assembly, the system can dissipate energy, which is normally released as heat to the 

surrounding environment. Once the structure is assembled into the stable structure, the 

system will stay in a local minimum of thermodynamic potential without “losing” any 

more energy to the surroundings. In contrast, dynamically self-assembled systems will 

dissipate energy during the process of organization into the ordered structure and 

during the maintenance of this structure. Once the flow of energy to the system ceases, 

the structure will fall apart. Varying the energy flow into dynamically self-assembled 
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systems can cause the system to adjust into different configurations by processes which 

can be completely reversible [66].  

 

 

 

Fig. 2.1: Equilibrium vs. dynamic self-assembly. (a) equilibrium (static) self-

assembly. Components of the system will organize in such a way to accomplish a state of 

thermodynamic potential minimisation. (b) nonequilibrium or ‘‘dynamic’’ self-assembly 

(DySA). Components of the system will organize and stay together only through a continuous 

supply of energy, dE. This energy dE will dissipate from the system as heat, dQ. Dynamic self-

assembly system may adjust into the different configurations depending on the rate of energy 

input. This figure was taken from Ref. [66]. 

Further to static and dynamic self-assembly, there can be defined two 

subgroups, so-called template (T) self-assembly and biological (B) self-assembly. 

Templated self-assembly involves interactions between the components of the system 

and regular features in their environment which determine the structures that form. 

Crystallization of colloids in three-dimensional optical fields, crystallization on 

surfaces that determine the morphology of the crystal are two examples of templated 

self-assembly. The template often comprises a 2D substrate. This substrate is usually 

treated, mechanically or/and chemically, in the way required to build the pattern that 

can selectively interact with components of the system that one wishes to assemble. 
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These patterns will govern the organization and assembling of the components through 

the interaction between components of the system and the substrate. Large particles on 

the interface (which can serve as a template) can be used to direct the self-assembly of 

smaller particles (which are called substrate) on the other interface. In template self-

assembly (TSA) one can use a prefabricated template structure in order to i) orient and 

direct structures that will have better long-range order than non-templated ones, ii) 

form novel structures/phases which will be very difficult or impossible to build without 

template and/or iii) control the form and structure of assemblies [57, 63, 67]. The main 

characteristic of biological self-assembly (BSA) is a high complexity and wide variety 

of functions that can be made. 

Beside these different kinds of self-assembly G. A. Ozin et al. present a 

slightly different partition of static and dynamic self-assembly. They divide static and 

dynamic self-assembly into three different sub-sections: co-assembly, hierarchical self-

assembly and directed self-assembly. The divisions between these different types of 

self-assembly is rather blurred. Co-assembly can be defined as simultaneous self-

assembly of different building blocks (which are the part of the same system) which 

leads to a synergic architecture that could not have been produced by the isolated self-

assembly of individual building blocks. Hierarchical self-assembly can be defined as 

the organization of a single building block over multiple length scales. Directed self-

assembly represents the case where self-assembly is directed by some external forces. 

Directed self-assembly represent the typical case for bottom-up-meets-top-down 

approaches (for example, using a lithographic pattern to direct the self-assembly of 

colloids from solution on a substrate, garnet films). Bottom-up and top-down 

approaches to self-assembly will be discussed in more detail later in this Chapter [64]. 

One of the main prerequisites for self-assembly to take place at all is the 

mobility of the self-assembling components. By mobility we mean the ease with which 

components can move with respect to each other. Because of this requirement, self-

assembly usually takes place in fluid phases or on smooth surfaces. If components 

irreversibly stick together during the collision, they will form a glass rather than a 

crystal or some other regular structure. As previously mentioned, dynamic self-

assembly will occur only when system is in a nonequilibrium state and able to dissipate 

energy. This feature of dynamic self-assembly is key to the development of strategies 

for preparing different structures and materials. Controlling the amount of externally 

energy delivered to the system, one can control properties and internal organization of 

the system (e.g., as tunable optical elements, sensors or reconfigurable machines) [57].  
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System Type Applications/importance 

Atomic, ionic, and molecular crystals S Materials, optoelectronics 

Phase-separated and ionic layered 

polymers 

S  

Self-assembled monolayers (SAMs) S, T Microfabrication, sensors, 

nanoelectronics 

Lipid bilayers and black lipid films S Biomembranes, emulsions 

Liquid crystals S Displays 

Colloidal crystals S Band gap materials, molecular 

sieves 

Bubble rafts S Models of crack propagation 

Macro- and mesoscopic structures 

(MESA) 

S or D, T Electronic circuits 

Fluidic self-assembly S, T Microfabrication 

Light matter“ D, T  

Oscillating and reaction-diffusion 

reactions 

D Biological oscillations 

Bacterial colonies D, B  

Swarms (ants) and schools (fish) D, B New models for computation 

/optimization 

Weather patterns D  

Solar systems D  

Galaxies D  

Table 2.1: Different examples of self-assembly. Here letters denotes different types of self-

assembly: S- static; D-dynamic; T-templated and B-biological self-assembly. This table was 

taken from Ref. [57].  

Over time, Nature has developed very efficient ways to control self-assembly 

from the atomic and subatomic length scales up to cosmological length scales. At 

present, Humans are not as successful. At the present day we are able to control some 
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aspects of self-assembly from atomic scale to meter scale. One of the reasons for this 

limited range is the difficulty in achieving full control over the tools and methods 

which will allow us to control the size of building blocks, shape and surface properties 

to a high level of precision. There are two different approaches by which matter can be 

shaped, positioned and organized in the process of self-assembly. One is bottom-up 

approach and the second one is top-down approach. Today’s science and technology 

uses the top-down approach in most of the self-assembly systems, contrary to Nature 

where the bottom-up approach is the main tool to realize self-assembling systems and 

different structures. In the top-down approach one tries to find and derive simple 

mathematical models that can, in adequately describe and predict the behavior of the 

target system [68]. Most of today’s methods of top-down approach are based on two 

steps. The first step consists of writing down the features on the substrate (e.g., by 

optical and e-beam lithography). The second step consists of deposition or etching 

processes in which microscopic and/or nanoscopic features are engraved into the 

substrate. The top-down approach has been successfully used in the process of dynamic 

self-assembly using Langmuir–Blodgett (LB) transfer or dip-coating, reaction-

diffusion, complex systems (e.g., Benard convection), swarming of motile organisms 

networks etc. The main disadvantage of this method is a limitation to existing 

experimental arrangements and the absence of potential to create new ones [64, 68, 69].  

From both approaches we have learnt that matter of all kinds (colloids and 

polymers, atoms and molecules) can experience spontaneous organization to a higher 

level of structural complexity. This ordering is driven by different forces acting over 

different length scales. To realize a high efficiency of self-assembly and self 

organization we need to be able to synthesize building blocks with specified 

dimensions and form. Furthermore, we need to control their surface properties (e.g., 

charge, functionality, hydrophobicity, hydrophilicity),thereby gaining command over 

the attractive and repulsive forces between them in order to assemble structures over 

multiple length scales and create systems (physical, chemical, or biological systems) 

with appropriate functionality. Among the scientific community there is a discussion 

about whether the top-down or bottom-up approach is most conducive to further 

advancement. While until now the top-down approach have given very good results in 

order to achieve the particular nanofabrication objectives, it would be very difficult to 

imagine top-down methods that could match the flexibility and power of the bottom-up 

self-assembly approach. For example it is hard to imagine how one can be able; using 

the top-down approach, to match the bottom-up approach for producing an inorganic 

nanowires with diameters below 2 nm [64]. 
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For successful realization of a self-assembling system one needs to use 

particles with well-defined and narrow distributions in size and shape. Typical particles 

used in self-assembly are spherical but recently there have been reported other particle 

shapes such as anisometric colloids, ellipsoids (produced by stretching of spherical 

particles), anisotropic particles that have been produced by microcontact printing, 

selective deposition and interfacial reaction and also polyhedral building blocks created 

from spherical particles. These new particles and structures have the potential to extend 

the range of structures that can be made with colloids [61]. To realize a successful self-

assembly system, one needs to find a way to “program” the components of the system 

in such a way that they can organize, reorganize and transform themselves into the 

controllable and desired structure [63]. 

Grzybowsky B. A. et al. [63] propose a useful four-step strategy to design 

dynamic (non-equilibrium) self-assembled systems. The first step consists of the 

identification of suitable structures. This means that at least one type of interaction in 

the system must be regulated and depends on the externally delivered energy (external 

magnetic field, intense optical field, hydrodynamic flows etc.). The second step is 

choosing ‘‘competing’’ interactions. This means that if only one type of force is present 

in the system it will fall apart (if only repulsive forces are present) or “stick” together 

but in a disordered way (if only attractive forces are present). Only if we have 

competition of these two forces in the system is it possible to realize and govern a self-

assembling system. The third step consists of the choice of length scale. At this length 

scale, the magnitudes of the attractive and repulsive forces acting on the system need to 

be similar. To make this choice one needs to have knowledge of the material properties 

of the surrounding medium, how individual interactions scale with object size, what is 

the distance between objects etc. The fourth step consists of synthesis. Dynamically 

self-assembling systems should be built from simple components. This can be 

accomplished by ‘‘bottom-up’’ approach where a system of complex materials can be 

formed from simple reactants. More details can be found in Refs [61] and [63]. 

The number of different methods to manipulate self-assembly systems, both 

static and dynamic, has increased in the last few decades. Among these methods, 

present in the laboratory and in nature, are light, temperature, solvent polarity, or even 

concentration of certain additives (ions). All of these methods can be very useful ways 

to realize self-assembly. One of the powerful methods for realizing and tailoring the 

mechanical, optical, and electronic properties of materials during self-assembly is the 

application of external fields: electric, magnetic or a combination of both fields [70]  
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For all the above mentioned reasons, the field-directed self-assembly method 

promises to be a very serious candidate in the bottom-up fabrication of novel materials 

and devices. In externally derived fields, particles will be polarized (electric field) or 

magnetized (magnetic field) which leads to anisotropic dipole-dipole interaction 

between particles. When the dipole-dipole interaction is strong enough to overcome the 

Brownian motion, particles will organize into chains and more complex structures. The 

ratio between the thermal energy and the maximum of dipole-dipole interaction is 

characterized by the dipole strength λ (equation 3.23). More details about dipole-dipole 

interaction can be found in Chapters 2.2 and 3.3 [70]. 

One of the main advantages of the external-field (electric, magnetic, and 

optical) directed self-assembly (here field is used as a physical template) is the 

possibility that fields can be tuned dynamically and switched on/off. Specifically, when 

the applied field is static and time-independent, it behaves like a physical template, 

modifying the free energy landscape on which the components evolve and guiding their 

assembly toward structures characterized by new energy minima. For example, optical 

fields are used in ‘‘optical tweezers’’ to direct polarizable particles to regions of highest 

field strength (three-dimensional colloidal crystals, two-dimensional colloidal 

assemblies used for epitaxial growth). Using uniform electric fields one can template 

assemblies with improved long-range order and controlled orientation (diblock 

copolymers, highly ordered lamellar and cylindrical domains). Using static and 

dynamic magnetic fields, it is possible to orientate the magnetic domains of 

nano/micrometer particles and self-assemble these particles into more complex 

structures. Using a time-varying (dynamic) magnetic field one can construct structures 

that have no template-like analogies. Dynamic magnetic fields can be used to agitate an 

equilibrium structure in order to remove energetically undesirable defects from the 

system and to build-up and preserve the self-assembled system [63]. In the magnetic 

field magnetic colloids can organize into linear chains, zigzag chains, magnetic 

nanowires, 2D arrays, pyramids [71], rings, static and dynamic lattices on the surface of 

fluids etc. [59]. 

One of the very popular ways to realize dynamic self-assembled systems is to 

use capillary forces. These forces act on the particles trapped between two interfaces 

(liquid-liquid or liquid air). Because the methods of capillarity-induced clustering can 

have several disadvantages, such as lack of long-range order, clusters can have a 

various number of defects. It is not possible to have complete control over the self-

assembly processes, so methods utilizing capillary forces usually incorporate external 
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electric or magnetic fields. An external field provides control over the interaction 

between the colloidal particles, leading to a greater variety of potential self-assembled 

structures. In this case the structures are strongly dependent on the parameters of the 

external field [58]. 

Snezhko A. et al. have created a system of snakelike self-assembled structures 

in an ensemble of magnetic microparticles placed at the liquid-air interface. This 

structure was induced by an alternating (AC) magnetic field. By attaching a large bead 

to a magnetic snake (bead-snake hybrid) they were able to spontaneously break the 

symmetry of surface flows and turn it into a self-propelled object. The magnetic snake 

structure was formed as a result of the interplay between surface waves on the liquid’s 

surface and the collective response of magnetic particles to an external AC magnetic 

field [72, 73].  

The use of capillarity-induced forces to run so-called magnetic spinners was 

also exploited by Grzybowsky B. A. et al. [70]. In this work they created two-

component rotors. In the external rotating field, the cores begin to rotate and center 

inside the gears, generating a hydrodynamic flow. Due to vortex-vortex repulsions only 

one rotor resides in a local energetic minimum. Due to localized magnetic fields 

created by electromagnetic actuators placed below the liquid’s surface, the rotors self-

assemble into a unique structure [63]. The basic principle lying behind the assembly at 

the interface (liquid- liquid or liquid-air, where the interface serves as a template for 

assembly) is the reduction in the interfacial energy. Further assemblies can be 

controlled by lateral interface mediated capillary forces [70]. 

Inspired by the propulsion of biological microorganism and bacteria, there has 

been a rising interest in both academia and industry, to realize self-assembled systems 

that can propel themselves in a microfluidic environment. To realize efficient 

propulsion in a nano/micro environment is a challenging task due to absence of inertia 

in low-Reynolds number systems. Purcell’s famous ‘‘scallop theorem’’ summarized the 

difficulties that can arise to achieve any net propulsion at low Reynolds numbers [74]. 

For the motion at low Reynolds number (in the case of incompressible flows), the 

governing equations are the continuity equation and the Stokes equation (Chapter 3.2). 

Nature uses two different approaches to realize propulsion at low Reynolds number. 

One is illustrated by beating cilia and the flagella of sperm, which use rodlike polymers 

that are anchored to the surface. The motion of these systems consists out of two steps. 

The first step is power stroke and the second step is recovery stroke. The second type of 
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motion is used in bacterial flagellae, where hydrodynamic friction converts rotational 

motion of helices into propulsion along their axes [75]. 

Until now science has successfully developed two different ways to realize 

propulsion on a micro/nano scale. One way is to use chemically-powered nanomotors 

[76] and the other way is to use is externally-powered propellers. In our work we use 

the latter approach. Pak O. S. et al. [77] propose further categorization of the 

externally-powered propellers in three separate sub-groups. The first type consists of 

helical propellers, which induce propulsion by the rotation imposed by an external 

magnetic field (this type of propulsion has been inspired by helical bacterial flagella). 

The second type of propellers uses an interface to break the spatial symmetry. 

Examples of this type of propulsion motion are called surface walkers. The third type 

of propeller are flexible propellers, which use the deformation of flexible filaments to 

realize the propulsion [77]. In the experimental work presented in this thesis we use a 

combination of the first and third type of propulsion motion. A question that is very 

close bound with the propulsion is: “What is the minimal design that is necessary to 

convert the rotational power of built-up structures into directed thrust in a viscous 

environment?” [75]. 

Tierno et al. [78] introduce an asymmetric paramagnetic doublet consisting of 

two paramagnetic particles (1μm and 2.8μm in diameter) “glued” together with DNA. 

These doublets rotate close to a glass surface in an externally induced circular and 

elliptic magnetic field. According to the Purcell scallop theorem [74] two degrees of 

freedom are required to break the spatial symmetry. To satisfy this condition the 

doublet must be displaced parallel and perpendicular to the solid wall [78]. There is an 

example where rotating clusters have been used as stirring components to enhance 

mixing and biochemical reactions. Mixing accelerates chemical and biological 

reactions relative to diffusion-only processes. Micropumps and artificial swimmers 

have also been developed from the clusters run and controlled by external fields [79]. 

Concerning the fact that science needs to find a worthwhile1 application (e.g. in 

economic terms must be profitable), one can pose the question: “What is the benefit of 

dynamic self-assembly?”. Based on the experimental point of view, Fialkowski M. et 

al. [65] propose three unique advantages of dynamic self-assembly over the static one.  

                                                 

1 Sufficiently valuable or important to be worth one's time, effort, or interest 

(www.thefreedictionary.com) 

http://www.thefreedictionary.com/
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The first advantage is adaptability. Dynamic self-assembled systems are also 

called “smart” structures. They can build themselves spontaneously from components 

and they are able to react to changes in the environment and transitions between 

different structures (as illustrated in Fig.1). Contrary to static self-assembly, dynamic 

self-assembly is far from equilibrium and by tuning the flow of energy to the system 

one can reversibly tumble different structures.  

The second advantage is self-healing. For dynamical self-assembled 

structures, any perturbation of the system that belongs to the same phase space will 

return the system to its stable configuration. If the perturbation is too large, the system 

will transform to another kind (mode) of assembly. This is reflected in the behavior 

where a system is able to heal itself from small “wounds”, while for large ones it will 

reconfigure itself and adapt to the new conditions. 

The third advantage is self-replication. To realize self-replication one needs to 

deliver chemical energy to the system. An example of a system capable of static self-

replication is the DNA double helix. When the flow of chemical energy stops the 

system will cease replicatation, but already replicated structures will not disassemble. 

An example of dynamic self-replication is the replication of cells where different parts 

first need to self-assemble and then diffuse (migrate) to specific locations in order to 

assemble the cell [65]. 

Dynamic self-assembled structures have already found applications in robotics 

and manufacturing, microelectronics, nanoscience and technology, netted systems, and 

crystallization at all scales [57]. The truth is that we, until now, have very little 

knowledge explaining how dissipation of energy can lead systems from disordered 

components to ordered structures. Studying the methods of self assembly can be a very 

useful way to extend our knowledge and lead us closer to an answer to the posed 

question. Only the combined work of different branches of science can bring us closer 

to this goal. 

2.2 Magnetorheological (MR) fluids 

 Magnetic particles have great importance in many different areas of science 

and industry. In the last three decades there has been growing interest to find model 

particle systems where particles can move freely in a liquid medium. Development of 

the various chemical techniques and methods, such as co-precipitation, thermal 
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decomposition, hydrothermal synthesis, microemulsions etc., have provided a broad 

range of possibilities for synthesis of micrometer and nanometer size particles 

(spherical or elliptical), rods, chains, networks and so on. Particles can be produced in 

broad range of sizes and shapes, they can be monodisperse or polydisperse, with 

different charges and functional groups etc. Three different groups of systems can be 

roughly defined by their characteristics and methods of preparation: 

 Ferrofluids: colloidal suspensions of ferromagnetic nanoparticles dispersed in 

some carrier fluids, oil or water. 

 Magnetorheological (MR) fluids: colloidal suspensions of magnetic or 

magnetizable micro-particles immersed in a non-magnetic fluid. There is an 

electric analog to MR fluids, so-called electrorheological (ER) fluids.  

 So-called magnetic holes: non-magnetic microparticles immersed in a ferrofluid 

[36]. 

 Particles used in MR fluids (or magnetic holes) are typically in the range 

of micrometers or several hundreds of nanometers, in contrast to those used in 

ferrofluids which have sizes of nanometers up to a few tens of nanometres. Of special 

interest are so-called superparamagnetic particles. Superparamagnetic particles consist 

of nanometer size iron cores (a few tens of nanometer in size) coated with a polystyrene 

matrix, with functionalized groups attached to particle surfaces. The size of these 

particles is important because their magnetic moment induced by applied external 

magnetic field depends on particle volume. For MR fluids this will result in a strong 

magnetization of the particles and high induced dipole moments. This will lead to 

larger particle-particle interaction and, consequently, shorter response times and 

stronger mechanical actions. In this respect, MR fluids have a more important role in 

mechanical systems that require a fast and efficient way to control force or torque 

transmission and applications dealing with control of vibrations, viscosity, friction, 

actuation, damping, robotics etc. These applications are becoming more and more 

relevant to academic and industrial pursuits. J. de Vicente et al. divide applications of 

MR fluids into three well separated areas: 1. colloids with adjustable rheological 

properties, 2. patterned anisotropic self-assembled materials, and 3. sensors for 

monitoring mechanical vibrations. While particles used in MR fluids traditionally have 

a spherical shape, in the last few years there has been an increased interest in the use of 

non-spherical particles (spheroidal and plate-like shapes) [32, 34, 37].  
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 In our experimental work (Chapter 5) we have mainly concentrated on 

MR fluids and now we will give some main characteristics and applications of them. 

Most of the characteristics of MR fluids are the same as for ER fluids. There are few 

different definitions of MR and ER fluids but in general they can be defined as 

colloidal dispersions of nanometer or micrometer size magnetizable particles (MR 

fluids) or polarizable particles (ER fluids), immersed in a carrier fluid with medium to 

low viscosity (i.e., silicone oil, water etc.) [32]. We will explain the advantages of MR 

fluids compared to ER fluids later in this thesis. 

 Since they were first discovered in the 1940s by the work of Rabinow 

and Winslow [47-49], magnetorheological (MR) and electrorheological (ER) fluids 

experienced a brief period of intense interest and research. After this short period, work 

on MR and ER fluids subsided for almost 30 years. The next considerable work was 

reported by Klass and Martinek on ER fluids comprised of silica and calcium titanate. 

From the end of 1980’ until the beginning of 1990’, MR and ER fluids became a 

subject of numerous research and has grown into a multidisciplinary field whose 

importance has stood up to the present day. This work, on MR and ER fluids, may have 

been encouraged by the Nobel Prize in physics for 1991which was awarded to P. G. de 

Gennes for their work on the statistical theories of soft matter [41]. This Nobel Prize 

led to an increase in the amount of fundamental research in the field of soft matter and 

statistical physics. Using the tools provided by the field of statistical physics, one can 

predict the properties of soft matter. These properties can later be confirmed and 

exploited directly in experiments and used for the synthesis and characterization of a 

wide range of new materials [35].  

 MR and ER fluids are complex systems (complex does not mean 

complicated) which can exhibit a very fast reversible transition (on the order of 

milliseconds) from liquid to nearly solid behaviour when an external magnetic field is 

applied. Due to this phase transition, viscosity can change by several orders of 

magnitude for applied magnetic flux densities with a magnitude of ~1 T [37]. This 

transition occurs as a result of the attractive induced (nonpermanent) dipolar forces 

between the particles which can be monitored by the application of a magnetic or 

electric field. The ability to accomplish a significant change in viscosity (several orders 

of magnitude, some authors report increase in viscosity by factor of 106 [32]) in a 

fraction of millisecond, is a key advantage of MR and ER fluids over conventional 

mechanical interfaces. MR fluids which change viscosity as a result of variations in the 

intensity of an external magnetic field are also known as “tunable fluids”. This “tuning” 
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capability of forces or torques is one of the basic properties of MR and ER fluids which 

provides wide opportunities for structural examination. When the external magnetic 

field is removed, aggregation of particles (chains, clusters, sheets or networks) will 

dissolve due to Brownian motion of particles and the fluid will experience transitions 

from a solid-like state back to a liquid-like state. This behavior appears because the 

dipole moment is not permanent. By removing the external field, the dipolar interaction 

between particles also vanishes. In this way all changes caused by the external 

magnetic field, in the sense of general properties of the macroscopic fluid system, can 

be reversed.  

 By changing their concentration, paramagnetic particles in an applied 

magnetic field can form different aggregated structures ranging from chains, networks 

or sheets of particles. In the case of two immiscible fluids, the size and shape of 

droplets can be changed by applying different fields and hence the rheology of the 

mixture changes. Forces opposing these aggregation processes caused by applied 

magnetic field, are hydrodynamic and thermal forces. The interplay between these three 

opposing forces leads to very rich spectrum of different types of behavior, which are 

not yet well understood [34, 37, 50].  

 MR fluids represent analogs of ER fluids and have many similar 

properties to ER fluids, but not without some fundamental differences. Some of these 

differences we will shortly explain here. More detail can be found in the cited 

literature. Some of the key differences and advantages of MR fluids compared to ER 

fluids are the absence of charge dependence, polarization of electrodes, adsorbed water, 

field inhomogeneities, greater stability over a broader range of temperature, higher 

strength etc. MR fluids are free of all of these difficulties and while they show 

analogous behavior when submitted to the external field (in this case magnetic field), 

they can serve as a better model system then ER fluids [33]. Depending on particle 

concentration, strength of magnetic field and composition of MR fluids, due to similar 

behavior as Newtonian fluid, MR fluids can demonstrate a distinct maximum in yield 

stress up to 100 kPa. In general they will show a Bingham plastic fluid behavior. In 

work with ER fluids, polarization of electrode and direct contact with fluid can 

generate some difficulties, which are not evident in experiments with MR fluids. 

Despite the aforementioned advantages of MR fluids, there are not as many 

experiments which include MR fluids as those involving ER fluids because tribological 

properties of MR fluids have not yet been well-characterized. This presents a wide 
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range of opportunities for future research, both theoretically and experimentally [50, 

51]. 

 One of the most prominent features of MR fluids is the fact that all 

questions can be studied simultaneously by experiment, computer simulation and 

theory. A theoretical understanding of the basic principles and mechanisms of phase 

transformations shows that MR fluids and colloids in general can serve as model 

systems for wide range of processes and phenomena in the field of condensed matter. 

One of the advantages of MR fluids lies in the possibility of a relatively easy and fast 

change in external perturbation of the system. The relaxation time of MR fluids is on 

the order of milliseconds, which enables experiments in real-time and real-space. 

Hence, most experimental results can be directly compared with theoretical predictions 

and computer simulations [35]. This very useful attribute of MR fluids has contributed 

to the rising interest for application of MR fluids as model systems for much more 

complicated and not yet fully understood behavior of different kind of biological and 

biophysical processes in nature (ranging from biological polymers to living cells) and 

for commercial uses. For biological research MR fluids are of special interest for 

measuring the viscoelastic properties of very small sample volumes. For example, for 

viscoelastic measurements of biological semitransparent samples which are only 

available in small volumes (200 µl are sufficient). Also, using single particle chain 

rotation in the cell interior, one can investigate the rheology of the cytoplasm of living 

cells or measure the viscoelastic properties of inhomogeneous materials [38]. 

 This growing interest in MR (and ER) fluids is accompanied by the 

development and application of a wide range of different techniques and methods for 

their observation and characterization. C. Wilhelm et al. [38] divide these 

microrheological methods into two distinct approaches concerning the way in which 

the sample or probe is manipulated. The first approach is the passive manipulation of 

the probe. This can be achieved by applying the external magnetic field or using optical 

tweezers. The second approach is that by using particles as active probes and using the 

fluctuation dissipation theorem, viscoelasticity can be estimated by observing the 

Brownian motion of the particles [38]. 

 As already mentioned, by applying an external magnetic field, a system 

will experience a very fast transition from a liquid-like to a solid-like phase. As a 

consequence of this transition, the induced dipole moment with cause particles to 

aggregate into a broad range of different structures, depending on their concentration 
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and other experimental conditions. This transition in suspension microstructure will 

induce consequential change in flow properties due to restriction in fluid motion. 

Hence, the viscosity of the fluid and optical properties of suspension will change. This 

change in optical properties, which can manifest as optical anisotropy (birefringence 

and/or dichroism), opens the possibility of using different diffraction techniques, such 

as laser light and neutron diffraction. Due to the formation of chains (or more complex 

structures), which are optically anisotropic, dichroism arises and provides information 

about the number of aggregated particles versus single particles [30]. A disadvantage of 

optical techniques lies in the fact that they produce only an average picture of spatial 

and temporal effects and thus cannot be used for in-vivo examination. This 

disadvantage can be avoided by using relatively large microparticles (≥0,5 µm), which 

is the resolution limit for usage of optical microscopy. With particles of this size one 

can, combining different methods of optical microscopy and video imaging tools, 

observe pattern formation and dynamics of individual particles in real time [32, 52]. 

One of the techniques based on the diffraction of light by chains of magnetic 

particles is the so-called magnetic chaining technique (MCT), which was introduced for 

the first time in 1994 by F. Leal Calderon et al. [43] and later improved and extended 

for smaller sample volumes. The performance and resolution of this technique is 

explained in more detail by R. Dreyfus et al. [44]. This method is very suitable for 

measurement of small interaction energies per unit area and interparticle forces up to 

10-13 N. This method is based on the following principle. By using monodisperse 

particles which have sizes in the range of the visible light, scattered light from each 

particle in the chain will interfere constructively. Using Bragg’s law one can calculate 

the distance d between particles in the chain from the measured diffraction wavelength. 

Distances between particles in the chain can be controlled and tuned by changing the 

strength and frequency of magnetic field.  

One of the methods for characterizing colloid-colloid interaction is so-called 

optical tweezers. Optical tweezers are powerful tools that can be used to probe and 

characterize the viscoelastic properties and exerted forces on molecular motors 

(myosin, kinesin, ribosomes etc.), composite structures (chromatin and chromosomes), 

DNA, aggregated protein fibers (actin), cell membranes etc. Optical tweezers work by 

trapping particles in regions of high optical field strength. The trapping strength is 

proportional to the power of the laser. A wide range of applications of optical tweezers 

is possible when they are combined with other techniques in the sense of creating 

permanent structures. However, proper use of optical tweezers is restricted to relatively 
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small sample areas. Use of optical tweezers over a larger area can be coupled with 

several difficulties. One of disadvantages of optical tweezers is significant heating 

caused by the optical field, which can produce undesirable effects in examination of 

living cells and biological materials [42, 44, 45]. 

The development of different experimental methods and techniques has 

accompanied the development of different simulation methods and theoretical models. 

These simulation methods can be split into methods that include hydrodynamic 

interaction and methods in which hydrodynamic interaction is neglected. The effect of 

hydrodynamic interactions between paramagnetic particles can be investigated using 

Stokesian dynamics (SD) and lattice Boltzmann (LB) methods. Stokesian dynamics 

(SD) simulation is based on two different levels of approximation of hydrodynamic 

interaction. One approximation is based on the additivity of forces (AF) and the other 

approximation is based on the additivity of velocities (AV). In particle dynamics (PD) 

simulations hydrodynamic interaction are neglected. Multi-body hydrodynamic 

interactions are governed by the motions of particles in real colloidal solutions. SD and 

LB methods provide tools that predict phase lag (the angle between the direction of the 

chain of magnetic particles and the direction of the applied external magnetic field) 

more accurately. On the other hand PD method can more accurately predict chain 

formation dynamics [46]. 

Since the similar governing equations can explain different systems, 

microscopic particles can be used as a many-body model system for describing 

processes that take place on a molecular scale and thus used for solving very 

complicated equations of motion. Comparing these results with computer simulations 

results can provide a new tool for solving many different problems in natural systems 

[32].  

The potential applicability of MR fluids has triggered a vast quantity of 

research in developing devices that have very broad range of applications [17]. Taking 

into account all the aforementioned advantages and applications of MR fluids for 

scientific research, there is a rapidly growing interest for commercial applications of 

MR fluids. MR fluids have been used as models for crystalline assemblies [9], glasses 

[10], van der Waals crystals [11], phononic crystals [12] and dipolar chains [13]. For 

commercial use they have been widely used in the automotive industry in addition to 

many engineering applications such as shock absorbers, dampers, clutches, brakes, 

torque transducers, ultrafine polishing technology, seismic protection, hanging bridge 
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stabilization etc. providing semi-active control of systems. In medicine and biology, 

uses include prosthetic bioengineering, investigating properties of living materials, 

biomedical applications, for microfluidics motions and manipulation of small fluid 

droplets, for transport through cell membranes, for protein crystallization, for drug 

delivery and for cancer therapeutic methods [32, 35, 51]. 

2.3 Dynamic self-assembly of magnetorheological fluids 

As mentioned in Chapter 2.2, induced dipole moment causes paramagnetic 

particles to organize into one dimensional (1D) chains when exposed to an external 

magnetic field. The behavior of these 1 D colloidal chains can be roughly subdivided 

into three different regimes following the difference in the value of the Mason number 

(for more details about Mason number see Chapter 3.4). In the first two regimes, which 

will be discussed in Chapter 2.3.1 and 2.3.2, there are different chain responses to the 

external rotating magnetic field. The simplest of these two behaviors is the synchronous 

regime where the chain follows the external magnetic field with a constant phase lag 

angle and for which the Mason number is slightly above zero (Chapter 2.3.1).The 

second regime is the asynchronous regime for which the Mason number is below or 

proportional to one (Chapter 2.3.2). In this case the phase lag angle between 

magnetization and the external magnetic field increases with time due to the rotational 

viscous torque preventing the chain from following the external field. A transition 

between the synchronous and asynchronous regimes, for a given 𝑀𝑛, can be calculated 

by solving the following equation: sin(2α) = 32Nηω/η0χ2H0
2ln (N/2). As long as 

sin(2𝛼) < 1 the chain will rotate synchronously with the field and asynchronously 

when the phase lag angle is < 𝜋/4 . For chains which length is shorter than the critical 

chain length, rotation is synchronous with the magnetic field. Rotation becomes 

asynchronous when the chain length is above the critical length for a given frequency 

[18]. These two regimes were the subject of numerous studies conducted by several 

research groups in the last two and a half decades. Later in this thesis we will describe a 

brand new type of behavior, which arises from a sudden switch from small to very 

large Mason number (Chapter 2.3.3). 

2.3.1 Dynamic self-assembly of magnetorheological fluids at low 

Mason number 

When an external magnetic field is applied, dipole repulsion and attraction 

mechanisms cause particles to aggregate into chains parallel to the direction of the 
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external magnetic field, lining up and minimizing the magnetic potential energy in the 

system [53]. This occurs if the dipole interaction between the particles overcomes the 

thermal energy. The strength of the interaction can be expressed by dipole strength λ 

which is the ratio of the maximum magnetic interaction energy between two particles 

aligned with the external magnetic field to the thermal energy (Chapter 3.3). When the 

strength of the external magnetic field is sufficient, individual particles will start to 

organize into chains. The length of the chains depends on the strength of the applied 

magnetic field and on particle concentration. For high values of the magnetic field and 

concentration, different structures beside the 1D chains have been reported [11, 32, 34, 

39, 40] (branches, clusters etc.). There are several models that describe diffusion of the 

particles into clusters which then also diffuse to form larger clusters (some authors use 

the name 1D cluster for the 1D chain of particles) [32]. Smaller chains will start to 

aggregate and produce longer chains (consist of many particles) in the longitudinal 

direction. When two chains are close to each other laterally one chain will start to 

diffuse towards the closer end of the other chain. When ends of these two chains are in 

close proximity they connect tip-to-tip and become a single longer chain. Short-range 

interactions are expected in chains consisting of rigid particles. Paramagnetic chains 

will be surrounded by a lateral field which gives rise to a repulsive or an attractive 

interaction. Free dipoles at the ends of the chain can have significant interaction with 

the ends of neighboring chains. This lateral attractive interaction between the 

neighboring chains can be caused either by the magnetic interaction between long 

chains or by magnetic fluctuations. Recent theoretical and experimental work shows 

that lateral attractive interaction is significantly weaker than longitudinal interaction i.e. 

tip-to-tip (or head-to-tail) aggregation of the chains [40]. Experimentally, the average 

size of the observed aggregates has been observed to scale with the inverse of the 

square root of the frequency of the rotating field, and the maximum number of beads 

for a stable chain scales with the inverse of the square root of the Mason number [39]. 

Experimental work performed and explained by Sonia Melle, James Martin, 

Lisa Gast and several other groups reveals the behavior of colloidal suspension at low 

values of Mason number, mostly below and slightly above one. There are two distinct 

behavioral regimes of colloidal suspensions in rotating fields, depending of the value of 

Mason number. One is called the low-frequency regime (which will be discussed in this 

Chapter) and the other is called the high-frequency regime (which will be discussed in 

Chapter 2.3.2). In the low-frequency regime, chains will rotate synchronous or with 
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phase lag behind the external magnetic field. In this regime chain will rotate without 

cracks or ruptures in chain structure [25, 26, 29, 30].  

Chains of particles will rotate due to the magnetic torque 𝚪𝐦. As long as the 

magnetic torque is larger or equal to the drag torque 𝚪𝐯, the chain will rotate 

synchronously with the magnetic field. When the drag torque 𝚪𝐯, is larger than 

magnetic torque 𝚪𝐦, the chain will rotate asynchronously with the magnetic field, 

leading to a phase lag between the field direction and chain orientation (Equation 3.21) 

[39]. 

Paramagnetic chains of particles can be formed by linking particles using 

DNA or some other bifunctional molecules which are able to react with functional 

groups of the paramagnetic particles. With these methods it is possible to create very 

rigid chains, semiflexible chains and chains that are very flexible. In this case, instead 

of breaking, chains will deform when the frequency of the external magnetic field is 

increased. Paramagnetic chains formed in this way can be bent and stretched using 

optical tweezers to determine the flexural rigidity or bending stiffness of the chain. 

When the frictional torque surpasses the magnetic torque, chain rotation evolves from 

the synchronous to asynchronous regime. Increasing the frequency of magnetic field 

causes phase lag between the rotation of the chain and direction of external magnetic 

field to increase and the chain rotation slows relative to the rotation of the external 

magnetic field. The chain reverses direction when the phase lag angle surpasses the 

angle value of π/2, and will realign the dipole moments with the external magnetic 

field. This type of a rotation that consists of stop and backward motions is known as 

“jerky motion”.  

Biswal S. L. and Gast A. P. [18] used superparamagnetic particles organized 

in 1D chains, where particles were linked together with flexible bis-biotin- poly-

ethylene-glycol (PEG) spacer molecules as well as with gluteraldehyde. They showed 

that in the synchronous regime, some of the longer chains were folded into a shape with 

a smaller effective length. Varying the length of the spacer molecule they were able to 

tune the chain flexibility. Because the particles in the chains are linked together, the 

chain will, instead of breaking down, start to bend and form S- or U- shape chains or 

will buckle toward the chain center of mass. If one can understand the interplay 

between elastic, viscous and magnetic forces this would be a powerful tool for 

controlling the shape of variably rigid chains at various external magnetic field 

frequencies [18, 31]. 
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S-shape and U-shape rotating chains have also been reported [17,30]. These 

two different shapes appear when the chains rotate with positive phase lag with respect 

to the external magnetic field. In this case ends of the chain will bend trying to decrease 

phase lag with the field. It can be considered that S-shaped and U-shaped rotating 

chains represent an intermediate state between straight chains and chain fragmentation 

(Chapter 2.3.2) [17, 30]. 

Wilhelm C. et al. [38] introduce a very interesting feature of paramagnetic 

particle chain related to biological applications. They use magnetic nanoparticles 

(“magnetic endosomes”) to probe the intracellular dynamics at local scale. The chains 

of these magnetic endosomes were formed inside the living cell. By measuring 

viscosity η and a relaxation time τ (time required for relaxation of the stress), one can 

quantify viscoelastic properties of rotational chain compared to the rotation of the 

external magnetic field. Understanding aspects of the rheological behavior of cells, 

such as their capability to undergo applied stress, are very important for explaining and 

understanding cellular function (muscle contraction, adhesion, division, and spreading 

of the cell). Viscoelasticity of cytoplasm can be probed using the rotational 

microrheological technique. This technique consists of measuring the response of the 

chains under the application of a controlled magnetic torque. Soft materials can behave 

both like fluids, through their ability to dissipate mechanical energy (viscosity) and like 

solids, through their ability to store mechanical energy (elasticity). From the sum of a 

viscous and an elastic contribution one can find angular velocity and depending on the 

relaxation time one can distinguish between solid-like and fluid-like behavior. If 𝜏 =

∞, one can define medium as a purely elastic and when 𝜏 = 0, one can define medium 

as a purely fluid medium. The dynamics of chains formed inside cells are governed by 

the viscoelasticity of the surrounding microenvironment. The rheological behavior of 

cytoplasm can be described by the Maxwell and Voigt approximation. More details can 

be found in Ref. [38].  

As already mentioned in Chapter 2.2, Dreyfus R. et al. [44] describe 

improvement related to the magnetic chaining technique (MCT). Using particles with 

sizes in the range of visible light, allowed them to use Bragg’s law of diffraction, 𝑑 =

𝑘𝜆/𝑛(1 + cos θ)), to measure the distance d between the particles. By increasing the 

intensity of the external magnetic field, the distance between the particles was observed 

to decrease due to the increase in attractive magnetic force. As a consequence, 

wavelength λ will also decrease causing a change in the sample color. Interparticle 

distance d is a result of mechanical equilibrium between repulsive and attractive forces. 
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Repulsive forces can result from electrostatic charge of the particle surface or from 

surface adsorbed polymers, or both. Attractive forces have their origins in the magnetic 

dipolar force, and depend on the strength of the applied external magnetic field. Short-

range van der Waals forces can also contribute to attractive forces between the particles 

in the chain (this forces need to be considered for interparticle distance < 20 nm). 

Analyzing the signal that is diffracted by the chain of particles, one can find the 

interparticle distance d. This method offers a very accurate and easy way to measure 

any kind of repulsive force between the magnetic particles [44]. 

Now, we will give a short review of different methods that consist of rotation 

of a sample cell with different angular frequency or application of fluid flow on the 

chain of particles formed in a static external magnetic field. In a low-Reynolds number 

regime microfluidic flow is usually dominated by laminar flow and the interaction 

between reagents is limited to diffusion. This process can be time-consuming for large 

molecules (biological and organic) with very low diffusivities. Capillary tubes filled 

with a suspension of paramagnetic particles can be submitted to a rotational motion 

which will create viscous drag force. 

Applied external magnetic field can be fixed at certain values and capillary 

can rotate with different angular velocities. In these circumstances, chains will follow a 

fluid that rotates as a solid body. Vectors of magnetic moment in the chain will point in 

the magnetic field direction. Particles in capillary tubes will form chains in a magnetic 

field and from the length of the chains at a given angular velocity one can study the 

dynamics of the particles. Conditions at which it is no longer possible to create chains 

of paramagnetic particle yields a critical value for Mason number. Examining chain 

length while varying the viscosity of the liquid and rotation speed can be useful in 

biological and organic applications in order to find the best methods for passive and 

active mixing. Formation of paramagnetic chains in microfluidic devices has an 

influence on the viscosity of suspension. This is important for very sensitive 

biosensors. Also in this case chains can be used to boost mixing and to accelerate 

biochemical reactions. Probing different experimental conditions, one can find the 

optimal value of Mason number that will enhance mixing. This optimal value of Mason 

number should favor formation of the chain and suppress formation of other structures. 

Paramagnetic chains have larger surface areas and reaction site densities than other 

aggregated structures and clusters [54]. Colloidal chains might also serve as a model 

system for folding pathways. One of the interesting features of this system is the 
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possibility of using it for measuring phase lag in different systems due to the viscosity 

of the surrounding fluid. 

2.3.2 Linear increase from small to large Mason Number 

In the previous Chapter we describe the behavior of chains of paramagnetic 

particles in the so-called low-frequency regime. Now we will show what is happening 

with the 1D chains when they are in the so-called high-frequency regime, which 

appears above a critical value of Mason number. Above this value, chains are no longer 

stable and will break into smaller fragments, mostly doublets, which again can rotate 

with the same frequency as the frequency of the rotating magnetic field [25, 26, 29, 30]. 

Melle S. et al [17, 30] found that the crossover Mason number (𝑀𝑛~1) does 

not generally depend on volume fraction, and that chain length will increase until a 

steady state is reached. In the rotating magnetic field there is competition between the 

hydrodynamic forces of the chain and magnetic dipolar interaction which will 

determine the final size of aggregates of paramagnetic particles. For longer chains, 

phase lag is greater than for shorter chains, which consequently shows that chain length 

i.e. size of aggregated particles decreases when Mason number is increased. The 

crossover Mason number marks the point at which the aggregation into chains in the 

rotating magnetic field is no longer possible. They measure dichroism that arises from 

optically anisotropic chains and thus give information about the number of aggregated 

particles. Measurement of the dichroism of the system shows existence of two different 

regions of frequency. The crossover frequency fc defines the point between these two 

regimes. Below fc, dichroism is not frequency dependent and remains almost constant; 

however above fc systems show a very strong dependence on frequency and it will 

decrease with a power law with exponent -1. In this region one can find only a few 

short chains that are contributing to dichroism. This shows that the dipolar magnetic 

forces are surpassed by hydrodynamic friction forces. As a result, to decrease viscous 

drag force, chains break up. When the value of the Mason number exceeds 1 (𝑀𝑛 > 1) 

chains that consist of two particles become unstable. As a consequence, the total 

number of aggregated particles will decrease with time [17, 30]. 

As previously mentioned, at the critical frequency fc of magnetic field, chains 

will rotate asynchronously with the magnetic field and longer chains will break in to 

smaller chains (consisting of only two particles) which are still able to rotate 

synchronously with the field. One of the parameters that defines the value of the critical 
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frequency fc is the viscous dissipation in the surrounding fluid, which as a consequence 

defines maximum elongation of the rotational paramagnetic chain. The longer the 

chains are, the critical frequency of the field that these chains can still follow is smaller. 

Sandre O. et al. [31] used liquid droplets instead of the solid particles with a 

predetermined size ratio. These liquid droplets were able to exchange matter between 

themselves.Using liquid droplets they were able to have prolate ellipsoid droplets that 

were able to rotate synchronously with the external magnetic fields up to the frequency 

of Ω/2π<10 Hz (compared to experiments with solid paramagnetic particles, where 

chains break into smaller chains when the frequency of the external field is Ω ≤ 1 Hz). 

Above the threshold frequency, droplets will break up and divide into droplets with 

smaller aspect ratio. These droplets will rotate synchronously with the external 

magnetic field. Hydrodynamic flow inside the rotating ellipsoids will reduce the 

viscous torque. Viscous torque is significant for a ratio of inner fluid to outer fluid 

휂𝑖/휂0 < 10 when ellipsoid eccentricity e = √1 − (b/a)2 is small. They also show that 

these small droplets, with increasing frequency of external field, become closer to each 

other and have a tendency to form a hexagonal network. These hexagonal networks are 

formed because of the dynamic repulsive interaction between the rotating droplets [31]. 

We use this feature of the system in our experiment with ferrofluid droplets in order to 

accomplish buckling motion of the chain. 

One, very interesting class of tunable fluids, that show similar characteristics 

as MR fluids, are so-called inverse ferrofluids or magnetic holes. Magnetic holes 

represent micron-sized non-magnetizable particles dispersed in a ferrofluid. Varying 

the saturation magnetization and/or the strength of the magnetic field one can control 

mechanical properties of the ferrofluid. Different shape, size, and functionality of non-

magnetizable particles contribute to the growing interest in and different application of 

inverse ferrofluids [37].  

Similarly to MR fluids, non-magnetizable particles in ferrofluids will form 

chains of spheres when submitted to an external static magnetic field. When a rotating 

magnetic field is applied these chains will start to rotate. Depending on the frequency 

of the applied magnetic field, they can rotate synchronously or asynchronously with the 

field. Increasing the frequency of the magnetic field, chains of particles will rotate with 

a phase lag relative to the external magnetic field. Above a certain frequency the chain 

will break into smaller chains that still can follow rotation of the magnetic field. This 

frequency depends on the velocity and viscous drag that acts on the ends of the chain 

[55]. Helgesen et al. found for a pair of two spheres, which is the shortest possible 
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chain, two different behaviors depending on the way in which the spheres are 

connected. If the spheres are weakly bound (if the only force that acts between them is 

dipole-dipole interaction), during one period of rotation, particles can separate and 

rotate as individual spheres for a short period of time. If particles are bound by surface 

contact forces (in addition to dipolar forces) spheres are not able to separate and rotate 

as individual particles. In our experiment we also notice individual rotation of particles 

which can lead to conclusion that in our system dipole-dipole interaction between the 

particles is dominant. These doublets can rotate synchronously and nonsynchronously 

with respect to the frequency of rotating field. The motion in magnetic holes systems in 

an external rotating magnetic field can be described with an equation of motion similar 

to the equation for a damped pendulum under a constant torque. Varying the ratio 

between viscous and magnetic forces can lead to wide range of different behavior [52, 

55]. 

For all above mentioned experiments, which utilise the same approach that we 

use, chains of particles (or spherical droplets) were submitted to an external magnetic 

field that can rotate with different frequencies. Competition between magnetic and 

viscous forces was observed. There is another approach that considers dynamics of 

paramagnetic chain of particles in a periodic channels. 

Kang T. G. et al. [56] found that dynamics of paramagnetic chains of particles in 

periodic channels circumstantially depends on the Mason number, particle fraction and 

magnetic susceptibility. Above the critical Mason number chains will rotate as a rigid 

body and they found three different conformations depending on the value of the 

Mason number: 1) the system will prefer chains with branches rather than linear chains; 

2) linear chains will tilt and break into two chains allowing slip zone between them and 

3) shorter chains rotate in the channel. Behavior of the system at lower Mason number 

is guided by magnetic forces and at high Mason number by viscous forces. Magnetic 

permeability (difference between the particles and the fluid) and particle fraction can 

also have influence on the dynamics of magnetic particles. Although experiments that 

involves chains of paramagnetic particles in the rotational magnetic field and chains of 

paramagnetic particles suspended in capillary tubes and microfluidic channels in a 

static magnetic field are very similar there is one fundamental difference. The chains of 

particles that rotate due to an externally applied rotational magnetic field will rotate as 

propeller. This will consequently produce an interference effect between different 

chains. This effect does not exist in the experiments that involve simple shear flow 

[56]. 
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2.3.3 Nonlinear increase from small to large Mason number 

In Chapters 2.3.1 and 2.3.2 we discuss the behavior of the chain of the 

particles when the value of the Mason number is 𝑀𝑛 < 1 and 𝑀𝑛~1. Also we show 

that in the case when 𝑀𝑛 > 1 the chains consist out two particles also start to dissolve 

in magnetic field and all aggregated structures disappear over the time. Now we will 

describe a brand new type of behavior, which was for the first time noticed and 

described during work on this thesis. This new feature of the system arises during a 

sudden switch from small to very large Mason number (𝑀𝑛 ≫ 1). For the large Mason 

number the frequency of the rotating magnetic field is so fast that even the doublets 

cannot longer follow the field rotation. Instead of breaking up, chains will start to curl 

from both ends (clockwise or anticlockwise depending on the phase difference between 

fields in x- and y-direction) toward the center of the chain collapsing to the rotating 

cluster. Before our experiment this behavior was only partially reported for chains that 

are made out of permanently linked particles (chains will form S- and U- shape 

structures, see Chapter 2.3.1). We also performed experiments with spherical ferrofluid 

droplets that also collapse to the cluster but via buckling motion toward the center. 

More details about these experiments can be found in Chapter 5.1. 
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3 Theoretical concepts and 

simulation methods 
In this Chapter, we will give a short overview of important theoretical 

concepts, simulation methods and equations that are important for explaning the 

phenomena observed during the experimental work of this thesis. The idea for this 

chapter is to serve as a quick reminder of all the important equations and the way how 

to derive them. Also we will give the basics of magnetisms and relevant equations 

concerning magnetic dipole energy. This chapter is connected with Chapter 5 and it 

will serve as an extension of this chapter. 

3.1 Magnetic properties of materials 

Magnetic materials are classified, depending of their magnetic susceptibility 

χm or relative permeability µr, in three major classes:  

 Diamagnetic materials: are the class of materials for which magnetic 

susceptibility is χm<0. In this class of materials, the magnetic field due to electronic 

motion of orbiting and spinning completely cancel each other. Consequently, the 

permanent magnetic moment of each atom is zero and diamagnets are forced towards 

minima of magnetic field strength i.e. they are “squeezed out” from the magnetic fields. 

Most materials are weakly diamagnetic, with χm on order of 10-5 including water, 

copper, silicon, diamonds, proteins, DNA, polymers, glass etc.  

 Ferromagnetic materials such as iron, cobalt and nickel, which have 

relatively large magnetic moments, M ≠ χ𝑚H and are strongly attracted to magnetic 

fields.  

 Paramagnetic materials are the class of materials for which magnetic 

susceptibility is χm > 0. They will align parallel to the magnetic field and experience a 

small force towards magnetic field maxima, i.e. they are attracted to magnetic fields. 

Paramagnetic materials include platinum, potassium, oxygen etc. A special case of 

paramagnetism, which is of great interest for us, is the so called superparamagnetism. 

Superparamagnetic particles have a small iron oxide core coated with a polymer shell. 

The particles will gain induce magnetic moment when subjected to a magnetic field. 
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This kind of particles, however, does not have magnetic memory and once the external 

field is removed, the particles redisperse and show Brownian motion [80, 81]. More 

about superparamagnetic particles used in our experiments can be found in Chapter 6.1. 

3.2 Hydrodynamic equations and Reynolds number  

When negatively charged paramagnetic particles are dispersed in the carrier 

fluid, they will experience random Brownian motion. By applying a static external 

magnetic field due to induce dipole moment, particles will organize into chains parallel 

to the magnetic field. The velocity of this chaining effect depends on the interplay 

between the thermal (Brownian) forces and the magnetic forces. When the external 

rotating field is applied to two or more particles, it will start to move in a viscous fluid. 

To fully describe and understand the dynamics of the system in these new conditions, 

we need to take into account one additional force called hydrodynamic interactions. 

Hydrodynamic interactions are long-range interactions and they are present only in the 

conditions when particles are moving. For the micrometer size particles, for which 

motion take place at low Reynolds number (10-3-10-5), where inertial forces can be 

neglected, the dynamics of the system is determined by hydrodynamic interactions. In 

this section, we will give a short overview of hydrodynamic equations, such as the 

Navier-Stokes equation, Stokes equation, and Reynolds number. More details can be 

found in Ref. [82, 83, 85, 87]. 

The continuity equation is the differential equation for the conservation of 

mass, which connects mass density ρ(r,t) of a fluid with flow field v(r,t). v (r,t) is also 

known as Eulerian velocity. The continuity equation can be written as: 

𝜕𝜌

𝜕𝑡
+ 𝛻 ∙ (𝜌𝒗) = 0 (3.1) 

From this equation one can see that matter is neither destroyed nor created. 

This equation balances between the change of the mass in an arbitrary volume with 

time (𝜕𝜌 𝜕𝑡⁄ ) and the mass flux through the surface S of a determinated volume V 

(𝜌𝒗). If possible, a change of the fluid density, both with time and space, are excluded 

i.e. ρ(r,t)= ρ. In that case, the continuity equation can be written as 
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𝛻 ∙ 𝒗 = 0, (3.2) 

This equation shows that velocity field is solenoidal, and fluids that obey this equation 

i.e. all fluids for which ρ=const. are called incompressible fluids. Water is example of 

an incompressible fluid 

Conservation of momentum for a Newtonian fluid can be expressed with a 

partial differential equation called the Navier–Stokes equation. Following Newton’s 

law of motion, the sum of the surface and body forces acting on the volume needs to be 

equal to the time rate of change of linear momentum inside the volume: 

∫
𝜕

𝜕𝑡𝑅(𝑡)

(𝜌𝒗)𝑑𝑉 + ∫ (𝜌𝒗)𝒗 ∙ 𝒏𝑑𝑆
𝑆(𝑡)

= ∫ 𝜌𝑓𝑑𝑉
𝑅(𝑡)

+ ∫ 𝛴 𝑑𝑆
𝑆(𝑡)

, (3.3) 

where the labels R(t) and S(t) (on the integral signs) indicate that the integrations are 

performed over the volume of the system and over its surface (following the Reynolds 

transport theorem). The first term on the left-hand side of the equation represents the 

time ratio of the change of the momentum in volume V, the second term on left side 

represent the flux of mass entering the volume V trough the bounding surface S. The 

first term on the right side represents the total body force acting over the volume V and 

is given by the volume integral 𝐹𝐵 = ∫ 𝜌𝑓𝑑𝑉
𝑅(𝑡)

. The second term on the right side 

represents the total body force acting on an infinitesimally small element dS of the 

surface S and is given by the surface integral 𝐹𝑆 = ∫ 𝛴 𝑑𝑆
𝑆(𝑡)

. This surface integral can 

be rewritten in terms of the stress tensor instead of the stress vector. In this case can be 

written as 𝐹𝑆 = ∫ (𝒏 ∙ 𝝈) 𝑑𝑆
𝑆

. Applying the Gauss theorem, surface integral can be 

replaced by the volume integral 𝐹𝑆 = ∫ (𝜵 ∙ 𝝈)𝑑𝑉
𝑅(𝑡)

. Equation (3.3) can be written as: 

∫
𝜕

𝜕𝑡𝑅(𝑡)

(𝜌𝒗)𝑑𝑉 + ∫ (𝜌𝒗)𝒗 ∙ 𝒏𝑑𝑆
𝑆(𝑡)

= ∫ 𝜌𝑓𝑑𝑉
𝑅(𝑡)

+ ∫ (𝜵 ∙ 𝝈)𝑑𝑉
𝑅(𝑡)

, (3.4) 

With help from the Gauss theorem, the flux integral can be transformed into a 

volume integral in tensor form (because (ρv)v is a tensor). Now we can write the 

following equation: 
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∫ (
𝜕(𝜌𝒗)

𝜕𝑡
+ 𝛻 ∙ (𝜌𝒗𝒗) − 𝜌𝒇 − 𝜵 ∙ 𝝈)

𝑅(𝑡)

𝑑𝑉 = 0, (3.5) 

The integrand is equal to zero because volume is arbitrary. Finally, the law of 

momentum conservation can be written as: 

𝜕(𝜌𝒗)

𝜕𝑡
+ 𝛻 ∙ (𝜌𝒗𝒗) =  𝜌𝒇 + 𝜵 ∙ 𝝈, (3.6) 

This form of the differential momentum equation is known as the conservative 

form and it is used to solve the governing equation in computational fluid dynamics as 

a starting point in many numerical algorithms. Another form of differential momentum 

equation can be obtained by expanding the divergence term and time derivative. This 

form is known as traditional form and can be written as:  

𝜌 (
𝜕𝒗

𝜕𝑡
+ 𝒗𝛻 ∙ 𝒗) + 𝒗 [

𝜕𝜌

𝜕𝑡
+ 𝒗𝛻𝜌 + 𝜌𝛻 ∙ 𝒗] = 𝜌𝒇 + 𝜵 ∙ 𝝈, (3.7) 

Since the mass over the volume V is conserved, the term in the square bracket 

is equal to zero so we obtain the differential momentum equation in the final form as: 

𝜌 (
𝜕𝒗

𝜕𝑡
+ 𝒗𝛻 ∙ 𝒗) = 𝜌𝒇 + 𝜵 ∙ 𝝈, (3.8) 

To complete this equation we need to consider two types of contributions to 

the stress tensor σ, i.e. we need to find the relation between the stress in the fluid and 

the state of the fluid. The first contribution comes from gradient in the hydrostatic 

pressure p (in the case of static fluid) and the force density can be written as −∇𝑝 or ∇ ∙

(−𝑝𝟏), where 1 is the unit tensor. The second contribution comes from the relative 

motion of neighboring fluid elements and from this motion viscous forces will arise. 

These forces will be linear in the case when velocity gradients are not large enough. 

They are linear in the first-order derivatives ∇v and ∇∙v. ∇v is a tensor gradient 

(𝛻𝒗)𝛼𝛽=(𝜕 𝜕𝑟𝛼⁄ )𝑣𝛽. In the case when fluid consists out of spherical particles i.e. when 

the fluid is isotropic we can write 𝛻𝒗 + (𝛻𝒗)T. Superscript T denotes the transpose of a 
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second-rank tensor. Combining these two contributions to the stress tensor we obtain 

the so-called Newtonian constitutive equation: 

𝝈 = −𝑝𝟏 + 휂[𝛻𝒗 + (𝛻𝒗)T], (3.9) 

Newtonian fluids are all fluids that can be described by this equation. Here η is 

dynamic viscosity and there exists a specific value for each material. Applying the 

substitution equation (3.9) to equation (3.8) we finally come to the expression for 

Navier-Stokes equation for incompressible fluid: 

𝜌 (
𝜕𝒗

𝜕𝑡
+ 𝒗𝛻 ∙ 𝒗) = −∇𝑝 + η∇2𝒗 + 𝜌𝒇, (3.10) 

𝛻 ∙ 𝒗 = 0, (3.11) 

More detailed discussion on the derivation of Navier-Stokes equation can be 

found in Ref. [82, 83, 86].  

For investigation of the fluid flow around small particle suspended in the 

viscous fluid one first needs to rescale variables in order to obtain the dimensionless 

Navier-Stokes equation. Particles suspended in a viscous fluid have a characteristic 

linear dimension 𝑎 and they move at velocity u. In this way we can write rescaled 

variables as 𝒓’ = 𝒓/𝑎 for dimension and v’=v/u for velocity. Now the Navier-Stokes 

equation can be written as: 

𝜌𝑎2

휂𝜏

𝜕𝒗′

𝜕𝑡′
+ 𝑅𝑒(𝒗′𝛻′)𝒗′ = 𝛻′2

𝒗′ − 𝛻′𝑝′ + 𝒇′, (3.12) 

where 𝒇′ = 𝒇/(휂𝑢 𝑎2⁄ ) is the rescaled force and 𝑝′ = 𝑝/(휂𝑢 𝑎⁄ ) is the rescaled 

pressure. Time scale τ is connected with the time τm which is the time that a particle 

needs to lose initial momentum due to friction with the fluid. For most experiments 

with colloidal particles τm scales from 1 to 100 ns (for particles up to 1μm). Time scale 

τ scales from 1 ms to 1s. From this we can conclude that 𝜏 ≫ 𝜏𝑚. Re is the 

dimensionless factor known as the Reynolds number. Reynolds number is the measure 
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of the ratio between inertial forces ρ(v∙∇)v (they scales as 휂𝑢2 𝑎⁄ ) and viscous forces 

η∇2𝒗 (they scales as 휂𝑢 𝑎2⁄ ). Ratio ρ/η that enters into the dimensionless Navier-

Stokes equation is known as kinematic viscosity ν. Reynolds number is defined as: 

𝑅𝑒 =
𝜌𝑢𝑎

휂
 , (3.13) 

Navier-Stokes equations are nonlinear and as a consequence can be solved 

only for specific cases. One of the cases that we are interested in takes place at a very 

low Reynolds number (𝑅𝑒 ≪ 1). In this case, the term (v∙∇)v vanishes and we can write 

the following equation: 

𝜌
𝜕𝒗

𝜕𝑡
= −∇𝑝 + η∇2𝒗 + 𝜌𝒇 , (3.14) 

For interactions that take place at a low Reynolds number, we can neglect the 

inertial term from the left side of the equation (3.14). In this case we can say that the 

system is in an over-damped regime and dynamics of the system can be described by 

the stationary Stokes equation. This equation is also known as the creeping-flow 

equation [82, 83]: 

−∇𝑝 + η∇2𝒗 + 𝜌𝒇 = 0 , (3.15) 

3.3 Magnetic dipole interaction 

Paramagnetic particles will acquire induce dipole moment m when external 

magnetic field H is applied. The interaction energy between two particles with aligned 

dipole moments is given by following equation: 

𝑈𝑚𝑎𝑔(𝑟, 𝛼) =
𝑚2

4𝜋

(1 − 3𝑐𝑜𝑠2𝛼)

𝑟3
 , (3.16) 

where α is the angle between the applied field and the line connecting centers of the 

spheres and r is the distance between sphere centers. The magnetic force acting 

between particles (which are approximated by a point dipole) includes two 
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components, radial  𝑭𝒓 and tangential 𝑭𝜽 component and is given by following 

equation:  

𝑭𝒎𝒂𝒈 =  𝑭𝒓+𝑭𝜽 =
3𝜇0𝑚2

4𝜋𝑟4
(3𝑐𝑜𝑠2𝛼 − 1) +

3𝜇0𝑚2

4𝜋𝑟4
sin(2𝛼), (3.17) 

When particles are organized in to the chain that consist of 2N+1 particle 

(labeled from –N to N), magnetic force acting on the ith is 𝑭𝒊 = 𝐹𝑖
𝑟𝒖𝒓 + Fi

θ𝒖𝜽 .  

 

Figure 3.1: Chain of paramagnetic particles in rotating magnetic field. 

When a magnetic field starts to rotate with angular velocity ω, the dipole 

interaction generates a magnetic torque on the chain. Due to this torque, a chain of 

paramagnetic particles will start to rotate following the external magnetic field with the 

phase lag angle 𝛼 = 𝜔𝑡 − 휃 . This rotation occurs due to magnetic torque 𝜞𝒎 , acting 

on the chain of N spherical magnetic particles and is given by: 

𝜞𝒎 = 𝒎𝘹𝑯 =
3𝜇0𝑚2

4𝜋

𝑁2

2(2𝑅)3
sin 2𝛼, (3.18) 
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Magnetic torque is counterbalanced by thermal Brownian torque; the torque 

due to inertia; the elastic torque due to the ends of and the chain bending away from the 

center and the viscous drag torque. For the over-damped regime, in which the Reynolds 

number is low (~10-4), the inertial torque may be neglected as well as chain-chain 

interactions. For the field used in our experiment viscous forces will dominate over 

thermal Brownian forces. The dynamics of the rotation of the paramagnetic chains can 

be understood from the interplay between magnetic, elastic and viscous torque. The 

viscous torque acting on the chain consists of N spherical particles and is given by 

equation:  

𝜞𝒗 = 휁𝑟𝜔 = 𝜅𝑉휂𝜔 , (3.19) 

where η is viscosity of a medium, 𝑉 = 𝑁(4
3⁄ )𝜋𝑅3 and κ is the shape factor. For a 

linear chain consisting of N particles, κ is given by 

𝜅 =
2𝑁2

ln (𝑁/2)
 , (3.20) 

For a given strength and frequency of the magnetic chain, at a steady angular 

velocity, for which two counteracting torques are in balance in the center of the chain, 

the phase lag angle is defined and can be calculated from following equation: 

sin( 2𝛼) =
32𝑁휂𝜔

𝜇0𝜒2𝐻0
2ln (𝑁/2)

 , (3.21) 

The strength of the interaction between the magnetic field and the chain of 

particles can be characterized by using two characteristic dimensionless parameters, 

dipole strength λ and Mason number 𝑀𝑛, which are connected to each other by Pécklet 

number Pe. Pécklet number is given by the following formula: 

𝑃𝑒 = 𝜆𝑀𝑛 =
32𝜋휂𝜔𝑅3

9𝑘𝐵𝑇
 , (3.22) 
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Since the magnetic particles are large comparing to the solvent particles, 

Brownian motion can be neglected, since the thermal forces, that are proportional 

to 𝑘𝐵𝑇 , are very small compared to the hydrodynamic and magnetic forces. Dipole 

strength λ shows the ratio of the maximum magnetic interaction energy between two 

particles aligned with the external magnetic field to the thermal energy: 

𝜆 =
 𝜋𝜇0𝑅3𝜒2𝐻0

2

9𝑘𝐵𝑇
 , (3.23) 

If the dipole strength λ is small, Brownian motion will dominate over the 

dipole interaction and chains of particles will not form. For λ large enough dipole 

interaction will dominate over the thermal (Brownian) motion which results in the 

formation of the chains. Thermal fluctuation of the chain becomes more significant as 

the length of the chain increases.  

The second parameter that describes the interaction between magnetic 

particles and surrounding solvent is the so-called Mason number 𝑀𝑛. The Mason 

number shows the ratio of the magnetic force and viscous force (hydrodynamic force 

that can be estimated as Stokes drag): 

𝑀𝑛 =
32휂𝜔

   𝜇0𝜒2𝐻0
2  

 , (3.24) 

Equation (3.24) shows the most widely used equation for the Mason number. 

Since the Mason number is a very important parameter for the characterization of all 

experiments performed during the work presented in this thesis, in the following 

subchapter we will present more detailed derivation and different formulations and 

equations for the Mason number. Some of the recent experiment shows that some other 

forces (acid-base, van der Waals etc.) can also play an important role. But, in the case 

when these forces can be neglected, a system can be completely described by 𝜙 

(volume fraction), λ (dipole strength) and 𝑀𝑛 (Mason number) [18, 25, 37]. 
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3.4 Mason number 𝑴𝒏 

In the Chapter 3.2 we have discussed and derived Navier –Stokes, Stokes 

equation and Reynolds number. In Chapter 3.3 we have discussed magnetic dipole 

energy as well as Pécklet and Mason number. In this chapter we will the derive 

equation for the Mason number which is one of the most important parameters to 

define our experiment. In Chapter 3.2 we show, that for our experimental system, 

consisting of superparamagnetic colloidal particles, the Reynolds number is very small, 

on the order of 10-4-10-5. Due to this behavior, the system will be in an over damped 

regime with no inertial forces exerted on it. The parameter which describe properties of 

our system is the ratio between the hydrodynamic and magnetic force in a fluid so-

called Mason number. The Mason number was for the first time introduced and defined 

by Gast A. P. and Zukoski C. F. [16] and later investigated and more detailed explained 

by several works performed by J. E. Matin and S. Melle. Some authors instead refer to 

the Mason number as the magnetoviscous number [31] which is an analogous name. 

The Mason number is a dimensionless parameter that compares this forces and can be 

smaller than 1, bigger than 1 or much larger than 1. Depending on the value of Mason 

number, a system will show three different types of behavior which has been discussed 

in more details in Chapter 2.3. Depending on the literature there are different 

denotation of the Mason number, such as 𝑀𝑛 [27, 28], 𝑀𝑎 [17], and  . In this thesis 

we use the denotation 𝑀𝑛. The Mason number was first derived for ER suspensions 

and afterwards was also extended to MR suspensions. Here we will show the derivation 

only for the MR suspensions that we are interested in. 

The Langevin equation is the governing equation of motion for paramagnetic 

particles and for motion of the 𝑖 −th particle we can write, 

𝑚
𝑑2𝒓𝒊

𝑑𝑡2
= 𝑭𝒊

𝒃 + 𝑭𝒊
𝒘𝒂𝒍𝒍 + 𝑭𝒊

𝒆𝒗 + 𝑭𝒊
𝒉 + 𝑭𝒊

𝒎 , (3.25) 

where m is the particle mass, ri  the position of the ith particle, 𝑭𝒊
𝒃 is the Brownian 

force, 𝑭𝒊
𝒘𝒂𝒍𝒍 the repulsive force, or the excluded-volume force between the particle and 

the wall 𝑭𝒊
𝒆𝒗is excluded-volume force, 𝑭𝒊

𝒉 is the hydrodynamic Stokes force, 𝑭𝒊
𝒎 is the 

magnetic dipolar force. For an over damped regime, for low Reynolds number, inertial 

force can be neglected. For the reasons mentioned in the previous section, the 
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Brownian force can be also neglected. By assuming an infinite fluid in which magnetic 

particles exist, the repulsive forces between the particles and the wall can also be 

neglected. For this reasons we can write equation (3.25) as: 

0 = 𝑭𝒊
𝒆𝒗 + 𝑭𝒊

𝒉 + 𝑭𝒊
𝒎 , (3.26) 

Excluded volume force 𝑭𝒊
𝒆𝒗 can be expressed by following equation:  

𝑭𝒊
𝒆𝒗 = 𝐴

3𝜇0𝑚2

4𝜋(2𝑎)2
∑  𝒓𝒊�̂�

𝑁

𝑗=1,
𝑗≠𝑖

exp [−𝜉 (
𝑟𝑖𝑗

2𝑎
− 1)], (3.27) 

where A and 𝜉 are specified constant. For the purpose of the experiment A is set to be 

2. For A=2, when two particles are in contact, and aligned along the direction of the 

field, interacting via a dipolar force, interaction force will be equal to zero. With n = 

10, the distance between the particles will increase to 𝑟𝑖𝑗/2𝑎 = 1.1 when the ratio 

between the excluded volume forces and the dipolar force of two particles aligned with 

the field is 𝜉=10.  

The excluded volume force is an important parameter for numerical simulation 

methods for preventing the overlapping between two neighboring particles. In the real 

space experiment this force can be excluded and the behavior of the system can be 

characterized by the ratio between viscous and magnetic force. The Stokes force on a 

sphere of radius a is 𝑭𝒊
𝒉 = −휁(𝒗𝒊 − 𝒗𝒇), where 𝒗𝒊 is the particle velocity, 𝒗𝒇 is the 

fluid velocity and assuming stick boundary conditions, the friction factor is 휁 = 6𝜋µ0𝑎, 

with µ0 the solvent viscosity. In steady shear the fluid velocity is 𝒗𝒇 = 𝑧�̇��̂�. 

The potential of interaction between two polarizable spherical particles 𝑖 and 𝑗, 

in the point dipole approximation, is  

𝑉(𝑟𝑖𝑗) = −𝛼 (
𝑑

𝑟𝑖𝑗
)

3

 (3𝑐𝑜𝑠2휃𝑖𝑗 − 1),  (3.28) 
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휃𝑖𝑗 is an angle between center-to-center line of spheres 𝑖 and 𝑗 to the direction of the 

external magnetic field, with a center-to-center separation 𝑟𝑖𝑗. Differentiating the above 

equation for potential one can find for the interaction force the following equation: 

𝑭𝒊
𝒎 = −

𝑓𝑐

2
(

𝑑

𝑟𝑖𝑗
)

4

[(3𝑐𝑜𝑠2휃𝑖𝑗 − 1)𝒓𝒊�̂� + 2𝑠𝑖𝑛휃𝑖𝑗𝜽𝒊�̂�] ,   (3.29) 

where 𝑓𝑐 = 3/2𝜋 µ0𝜅µ,𝑐𝑎2𝛽µ
2𝐻0

2 is the force at contact between two particles aligned 

with the field. From this equation follows that the radial component is attractive only 

when 휃 ≥ 54.7°.  𝛽µ is the magnetic contrast factor or coupling parameter  𝛽µ =

(𝜅µ,𝑝 − 𝜅µ,𝑐)/(𝜅µ,𝑝 + 2𝜅µ,𝑐), where 𝜅µ,𝑐 is the relative permeability (to the vacuum) of 

the continuous (liquid) phase, 𝜅µ,𝑝 is the relative permeability of the particles, and µ0 =

4𝜋 ∗ 10−7 H/m is the permeability of vacuum. Magnetic contrast factor  𝛽µ can be used 

as a parameter to define the type of MR fluids. For conventional (strong) MR fluids, the 

value for inverse ferrofluids (weak MR fluids) is 0 < 𝛽µ < 1 and for inverse ferrofluids 

(weak MR fluids) is −0.5 < 𝛽µ < 0. Derivation from non-dimensional Langevin 

equation, with respect to the distance and time, one can find a non-dimensional time τ: 

𝜏 =
122휂

휂0휂𝑠𝑀2
 ,   (3.30) 

Multiplying τ by the angular frequency of the external magnetic field ω will 

give equation for Mason number: 

𝑀𝑛 = 𝜏𝜔 =
122휂𝜔

휂0𝑀2
 , (3.31) 

where M is the magnetization of the paramagnetic particles. James E. Martin [28] 

offered a different way to derive the Mason number from the non-dimensional 

Langevin equation. We will give here only the final step of this derivation. For steady 

shear, coupled Langevin equations can be expressed in terms of the dimensionless 

variables, 
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𝜕𝒓𝒊
′

𝜕𝑡𝑖
′ = 32𝑀𝑛𝑧𝑖

′�̂� + ∑ 𝒇𝒉𝒔

𝑗≠𝑖

(𝑟𝑖𝑗
′ ) + ∑ 𝒇𝒅

𝑗≠𝑖

(𝑟𝑖𝑗
′ ) + 𝒇𝒃𝒐𝒖𝒏𝒅(𝑧𝑖

′) + 𝐽′𝑹𝝉/𝝉𝟏
 (3.32) 

The Mason number is defined as 𝑀𝑛 = 휂0�̇�/2 µ0𝜅µ,𝑐𝛽µ
2𝐻0

2 for a suspension 

of magnetic particles. Normalization has been done in a way such that the particle 

diameter is unity, 𝑟′ =
𝑟

𝑑
, and the time variable 𝑡′ =

𝑡

𝜏1
 is normalized by the 

characteristic time 𝜏1 = 32𝑀𝑛/�̇�. In this way characteristic time 𝜏1 is independent of 

particle size [28, 34, 37, 46]. 

From the definition of the Mason number one can find some very useful 

parameters. Melle et al. [46] find critical value of Mason number and thus they can 

predict critical length and mechanical stability of a dipolar chain. Concerning the 

behavior of particles in the chain, two time scales can be considered. Interplay between 

these times will define the behavior of the system. Time τ can be considered as the time 

that is necessarily for one particle to move under the influence of another poralizable 

particle. Second time is the time 𝜔−1 that can be defined as the shearing time for a 

particle moving with angular frequency ω. In the case when τ> 𝜔−1 (which response 

to 𝑀𝑛 > 1) no stable chain will be formed [46]. 

3.5 Motion between particles in the fluid and simulation 

methods 

When two spherical particles move toward each other, each of these particles 

will generate a velocity field, which will be transmitted through the fluid between them, 

and it will influence their motion. Thus the motion between them will be retarded. Also 

the fluid between the particles needs to be removed. There are two types of motion 

relative to the axes that connect the centers of these two spheres. Fluid can be squeezed 

out from the gap between two spheres or it can be sheared by rotation of the spheres. In 

the experimental work that is presented in Chapter 5.1 we use two types of simulation 

methods that depend on the separation between the particles. Numerical simulations 

have been performed by Steffen Schreiber and Prof. Dr. Walter Zimmermann from the 

University of Bayreuth. The first method is the method of reflection, which can be used 

for widely separated particles. This method uses the method of hydrodynamic 

interactions between point-like particles in the Rotne-Prager approximation. Rotne-
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Prager approximation has been used in order to simulate the buckling motion of the 

particles in the chain. Second method is the fluid particle dynamics (FPD) method, for 

which the flow in the gap region between two particles is dominant, where the particles 

are treated as a part of the liquid of much larger viscosity for which the lubrication 

theory can be applied. This method has been used in order to simulate the curling 

motion of the particles in the chain. In the next chapters we will give a short overview 

of these methods and point to their importance in our work [21, 23, 82, 83, 88]. 

3.5.1 Method of reflection: the Rotne-Prager approximation 

Method of reflection is an asymptotic method that can be used for the particles 

of arbitrary shape when they are widely separated (large 𝑅 𝑎⁄ , where 𝑎 particle size and 

R is is particle-particle separation). Before we proceed with the Rotne-Prager 

approximation we will shortly define an expression for the stick boundary condition 

and Faxén theorems. The translational velocity 𝒗𝒊 and the angular velocity 𝜴𝒊 of the ith 

Brownian particles are related to the fluid flow velocity u(r) for position r on the 

surface of this particle by following equation: 

𝐮(𝒓) = 𝒗𝒊 + 𝜴𝒊 × (𝒓 − 𝒓𝒊),          𝒓 ∈ 𝜕𝑉𝑖 (3.33) 

where 𝜕𝑉𝑖 is the surface of the ith Brownian particle and 𝒓𝒊 is the geometrical center of 

the ith Brownian particle (position coordinate). Using the Green’s function 

representation of the creeping flow equation for a multi sphere problem and making a 

summation of the integrals over the surface 𝜕𝑉𝑗, 𝑗 = 1, … , 𝑁 of the N spherical 

Brownian particles we can write  

𝐮(𝒓) = ∑ ∮ 𝑑𝑆′𝑻(𝒓 − 𝒓′)𝐟j(𝒓′)
𝜕𝑉𝑗

𝑁

𝑗=1

 ,    (3.34) 

where matrix  𝑻(𝒓 − 𝒓′) is Oseen matrix, which connects a point force at a point 𝒓′ to 

the resulting fluid flow at a point 𝒓 and  𝐟j is the force per unit area exerted by surface 

element of Brownian particle j on the fluid. These two equations (3.33 and 3.34), for 
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the stick boundary conditions, must coincide with position r on surface of the ith 

Brownian particle. Combining 1 and 2 we obtain following equation  

𝐯𝒊 + 𝜴𝒊 × (𝒓 − 𝒓𝒊) = ∑ ∮ 𝑑𝑆′𝑻(𝒓 − 𝒓′)𝐟j(𝒓′)
𝜕𝑉𝑗

𝑁

𝑗=1

,     𝒓 ∈ 𝜕𝑉𝑖 , (3.35) 

For a single sphere (N=1), Faxén’s theorems can be derived from equation 

(3.35) by adding on the right hand-side the homogeneous solution 𝐮0(𝒓) of the 

creeping flow equation: 

𝐯𝑝 + 𝜴𝑝 × (𝒓 − 𝒓𝑝) = 𝐮0(𝒓) + ∮ 𝑑𝑆′𝑻(𝒓 − 𝒓′)𝐟j(𝒓′)
𝜕𝑉

, 𝒓 ∈ 𝜕𝑉 , (3.36) 

where 𝜴𝑝 is rotational velocity, 𝐯𝑝 is translational velocity and 𝜕𝑉 is the surface of the 

sphere with its center at the 𝒓𝑝and f is the force per unit area exerted by the surface 

element of the sphere on the fluid after sphere was immersed in the fluid flow velocity 

field 𝐮0. Further transformation of the equation (3.36) (one can find more details in 

Ref. [88]) leads to the Faxén’s theorems for translational motion as following: 

𝐯𝑝 = −
1

6𝜋휂0𝑎
𝐅𝑝

ℎ + 𝐮0(𝒓𝑝) +
1

6
𝑎2𝛻𝑝

2𝐮0(𝒓𝑝) ,   (3.37) 

where 𝜇𝑡 = 1 6𝜋휂0𝑎⁄ . Alternatively we can write (using notation from Ref. [83]): 

𝒗𝑝 = 𝜇𝑡𝐅𝑝 + ℒ𝐹
𝑡 𝒖(𝒓)|𝒓=𝒓𝒑

   with         ℒ𝐹
𝑡 = 1 +

1

6
𝑎2𝛻2 , (3.38) 

If 𝐮0(𝒓) ≡ 0 (or 𝒖 = 0) we can obtain from equations (3.37) and (3.38) the 

well known Stokes friction law for translation. 
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From equation (3.36) one can derive (one can find more details in Ref. [88]) 

the Faxén’s theorems for rotational motion as following: 

𝜴𝑝 = −
1

8𝜋휂0𝑎3
𝓣𝑝

ℎ +
1

2
𝛻𝑝 × 𝐮0(𝒓𝑝) , (3.39) 

where 𝜇𝑟 = 1 8𝜋휂0𝑎3⁄ . Alternatively we can write (using notation from Ref. [83]): 

𝜔𝑝 = 𝜇𝑟𝐓𝑝 + ℒ𝐹
𝑡 𝒖(𝒓)|𝒓=𝒓𝒑

  with  ℒ𝐹
𝑡 =

1

2
𝛻 × , (3.40) 

where 𝛻 × represent tensor-like operator. The main idea that stands behind the method 

of reflection is based on the following assumptions: the ambient field that surrounds 

each particle consists of the original ambient field plus the disturbance field produced 

by another particle (or particles). Each correction of ambient field around exact particle 

will produce a new disturbance solution for that particle, which as a consequence 

changes the ambient field around another particle (or particles). The method of 

reflection is an iterative method, where each next iterative step will reduce the error i.e. 

level of accuracy increases with each step of iteration [82]. If we now consider particle 

i subjected to the external force 𝐅𝑖 and torque 𝐓𝑖. In the zeroth order particle will move 

with velocity  

𝑣𝑖
0 = 𝜇𝑡𝐅𝑖              and           𝜔𝑖

0 = 𝜇𝑟𝐓𝑖  , (3.41) 

This motion will create a flow field 𝒖0(𝒓) which will influence the motion of 

the neighboring particle j. 𝒖0(𝒓) represent the fluid velocity field of sphere i in the 

absence of other particles i.e. in this case particle j. Now, following equation (3.38) and 

(3.40) velocities caused by flow field 𝐮0(𝒓) we can write as following: 

𝒗𝑗
1 = 𝜇𝑡𝐅𝑗 + ℒ𝐹

𝑡 𝒖0(𝒓)|𝒓=𝒓𝒋
 , (3.42) 
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𝝎𝑗
1 = 𝜇𝑟𝐓𝑗 + ℒ𝐹

𝑡 𝒖0(𝒓)|𝒓=𝒓𝒋
 , (3.43) 

This motion will produce an additional flow field 𝒖1(𝒓). As aforementioned, 

the method of reflection is an iterative method and thus flow field is the result of a 

series of an expansion representation of the flow field 𝒖(𝒓) in powers of 𝑎 𝑟𝑖𝑗⁄ , where 

𝑟𝑖𝑗 is the distance between the spheres. Thus we can write following equation: 

𝒖(𝒓) = 𝒖𝟎(𝒓) + 𝒖𝟏(𝒓) + 𝒖2(𝒓) + ⋯, (3.44) 

Each field 𝒖𝑛(𝒓)will satisfy the creeping flow equation. The calculation of the 

flow field 𝒖(𝒓) is solved by repeating the iterative procedure indefinitely, where 

convergence of resulting series expansion is assumed. Now following the Faxén’s 

theorem as functions of the distance between two spheres we can obtain translational 

velocities as following: 

𝑣𝑖 = 𝑣𝑖
0 + 𝑣𝑖

2 + 𝑣𝑖
4 + ⋯            and               𝑣𝑗 = 𝑣𝑗

1 + 𝑣𝑗
3 + 𝑣𝑗

5 + ⋯, (3.45) 

Following the same procedure for angular velocity we can write: 

𝜔𝑖 = 𝜔𝑖
0 + 𝜔𝑖

2 + 𝜔𝑖
4 + ⋯          and            𝜔𝑗 = 𝜔𝑗

1 + 𝜔𝑗
3 + 𝜔𝑗

5 + ⋯, (3.46) 

The above presentation can be applied to the interaction between two spheres. 

If there are more than two particles in the system, we need to take into account 

interactions between all the particles which, as a consequence, leads to many-body 

interactions [83, 88]. 

The first step in an iterative process gives an expression for the mobilities that 

are exact up to the order ( 𝑎 𝑟𝑖𝑗⁄ )3. This first step is known as the Rotne-Prager 

approximation: 
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 𝝁𝑖𝑖
𝑡𝑡 = 𝜇𝑡𝟏                                                                                          + 𝑂(4), (3.47a) 

𝝁𝑖𝑗
𝑡𝑡 = 𝜇𝑡 [

3

4

𝑎

𝑟𝑖𝑗
(𝟏 + 𝑟𝑖�̂�𝑟𝑖�̂�) +

1

2
(

𝑎

𝑟𝑖𝑗
)

3

(𝟏 − 3𝑟𝑖�̂�𝑟𝑖�̂�)]               + 𝑂(4), (3.47b) 

 𝝁𝑖𝑖
𝑟𝑟 = 𝜇𝑟𝟏                                                                                         + 𝑂(4), (3.47c) 

 𝝁𝑖𝑗
𝑟𝑟 = −𝜇𝑟

1

2
(

𝑎

𝑟𝑖𝑗
)

3

(𝟏 − 3𝑟𝑖�̂�𝑟𝑖�̂�)                                                 + 𝑂(6), (3.47d) 

 𝝁𝑖𝑖
𝑡𝑟 = 0                                                                                              +  𝑂(7),     (3.47e) 

 𝝁𝑖𝑗
𝑡𝑟 = 𝜇𝑟𝑎 (

𝑎

𝑟𝑖𝑗
)

2

𝒓𝑖�̂� ×                                                                   +  𝑂(5),     (3.47e) 

The above presented values are taken from Ref. [83, 84] (where one also can 

find more details). Here O(n) denotes correction of order (𝑎 𝑟𝑖𝑗⁄ )
𝑛

. Strictly speaking 

only the translational part (equations 3.47a and 3.47b) is referred to as the Rotne-Prager 

tensor (also known as Yamakawa tensor). But when we consider mobility in an Rotne-

Prager approximation we mean on the whole equation 3.47a-3.47f. More information 

about Rotne-Prager tensors and a variational principle that minimizes energy 

dissipation which is originally used to derive the Rotne-Prager tensor can be found in 

Ref. [23].  

3.5.2 Lubrication theory, shearing, squeezing and the fluid 

particle dynamics (FPD) method 

As particle separation becomes smaller and smaller, the number of reflections 

of the higher order, necessary to describe the system, increases in order to get more 

accurate results for the hydrodynamic interaction. Thus the method of reflection is no 

longer feasible for the distances small or close to contact between two particles. To 
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describe the dynamics of two neighboring particles in relative motion, one can use so-

called lubrication theory. In general there are two different type of relative motion that 

particles can perform, and thus generate the lubrication zone. A lubrication zone 

represents the gap between two particles in which strong velocity gradients exists. One 

is “shearing” motion (Figure 3.2 a)) and the other is “squeezing” motion (Figure 3.2 

b)). Leading order terms in the lubrication equation for forces and torques are singular 

and depend on the small parameter ε, where 휀 = 𝑟𝑖𝑗 𝑎 − 2⁄ ≪ 1, is the dimensionless 

gap parameter. From lubrication equation one can find that for “shearing” motion, were 

surfaces past each other by sliding motion, the leading-order term of the hydrodynamic 

friction coefficient is 𝑂(ln ε-1) and for the “squeezing” motion, where the two rigid 

surfaces (particles) approach to each other along their line of centers, the leading-order 

term of the hydrodynamic friction coefficient is 𝑂(ε-1), when ε→0 [82, 83].  

 

 

 

Figure 3.2: Scheme of the shear (a)) and the squeeze (b)) flow of two spheres of the same 

radius 𝑎. Here ε is the dimensionless gap parameter. This scheme has been redrawn from Ref. 

[82]. 

In Brownian dynamic simulations (and other simulation methods) colloidal 

suspensions are normally treated as a mixture of solid particles and a simple liquid. 

This approach can be very complicated and accompanied with singularity problems 

when squeezed flow is concerned. Tanaka H. and Araki T. demonstrate a new 

simulation method in which colloidal suspensions are treated as a mixture of viscous 
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undefomable fluid particles and nonviscous simple liquids. They named this model 

“fluid particle dynamics” (FPD) method. In this method they combine a lattice 

simulation for continuous fields and off-lattice simulation for particles. Colloidal 

mixture, in this method, was treated as a completely immiscible fluid mixture. When 

the ratio between 휂𝑐 which is viscosity of particle (particle is undeformable, but 

viscous) and 휂𝑠 which is viscosity of fluid component is equal to infinity i.e. 휂𝑐 휂𝑠⁄ =

∞ fluid particles can be regarded as solid ones. They define viscosity ratio R as 𝑅 =

휂𝑐 휂𝑠⁄  which is the measure of accuracy of the simulation method. For concentration 

field, the following equation can be written: 

𝜙𝑖(𝑟) = [tan ℎ {(𝑎 − |𝒓 − 𝒓𝒊 |)/𝜉} + 1]/2 , (3.48) 

where 𝒓 is the position for on-lattice site, 𝒓𝒊 is the off-lattice position of particles i, 𝑎 is 

the radius of the particles and 𝜉 is the interface thickness. In this method complicated 

singularity problems associated with the squeezed flow are avoided due to the 

finiteness of 휂𝑐. FPD method can be used for colloidal particles of arbitrary shape. In 

our work we used lubrication theory and FPD method in order to simulate curling 

motion of the paramagnetic chain of particles [21]. 

3.6 Overdamped sine-Gordon and double sine-Gordon 

equation 

In this chapter we will present basic equations that can explain the behavior of 

ribbons for different frequencies and eccentricity of a magnetic field. The equations 

that have been derived here are a part of simulation methods used to explain the 

behavior of ribbons presented in more details in section 5.2. Mathematical calculation 

and numerical simulations has been performed by Franz Mertens from the University 

of Bayreuth and Niurka R. Quintero and Renato Alvarez-Nodarse from the University 

of Seville, Spain. Their work was based on the following peer reviews [89-98], where 

one can find more details. 

We are interested to explain different behaviors of the system depending on 

the frequency ω. For this purpose we will first write partial differential equation for a 

certain potential function V and for a sufficiently large ω, 
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𝜕2𝜙

𝜕𝑡2
−

𝜕2𝜙

𝜕𝑥2
+ 𝑉′(𝜙) = 𝑓 − 𝛾

𝜕𝜙

𝜕𝑡
+ 𝜖1𝐴(𝜙)cos 𝜔𝑡 + 𝜖2𝐵(𝜙)sin 𝜔𝑡, (3.49) 

where V(ϕ) is normalized external potential, f is constant contribution of the driving 

force, γ is the normalized dissipative (damping) coefficient, A and B are normalized 

amplitudes of the periodic force and ω is normalized frequency of the periodic force. 

Coefficients 𝜖1 and 𝜖2 will be explained latter. Now we want to transform this equation 

into the equation in which the driving force changes by an effective potential 

independent of time t. To do this we first need to discretize equation (3.49) [equation 

above] in x in the interval [0,L] where L is sufficiently large. We take the lattice 𝑥𝑛 ≔

𝑥(𝑛) ≔𝐿𝑛 𝑁⁄ , n=0,1,…,N and we let 𝜙𝑛(𝑡) ≔ 𝜙(𝑥𝑛, 𝑡), K= (𝑁 𝐿⁄ )2. Now we can 

write equation (3.49) in the following form 

𝜕2𝜙

𝜕𝑡2
− 𝛥𝑛𝜙𝑛 + 𝑉′(𝜙) = 𝑓 − 𝛾

𝜕𝜙

𝜕𝑡
+ 𝜖1𝐴(𝜙)cos 𝜔𝑡 + 𝜖2𝐵(𝜙)sin 𝜔𝑡, (3.50) 

where 𝛥𝑛𝜙𝑛 = 𝐾(𝜙𝑛+1 − 2𝜙𝑛 + 𝜙𝑛−1) is the discrete one-dimensional Laplace 

function Here K represents coupling between particles in the chain.  

Now following idea of Kapitza and Kivshar [90-93, 114, 115] we will split the 

function 𝜙𝑛(𝑡) into two components. The first component is a slowly varying 

component Φ𝑛(𝑡) and the second component is a fast varying component 휁𝑛(𝑡). With 

the help of these two components we can describe the slow and fast evolution. The 

function  휁𝑛(𝑡) has zero mean value and describes the small (and fast) oscillation 

around slowly varying function Φ𝑛(𝑡). If we write that 𝜙𝑛(𝑡) = Φ𝑛(𝑡) + 휁𝑛(𝑡) and 

assuming that   휁𝑛 is small enough and using Taylor series, we can rewrite equation 

(3.50) as following 

−𝛥𝑛Φ𝑛 − 𝛥𝑛휁𝑛 + 𝑉′(Φ𝑛) + 𝑉′′(Φ𝑛)휁𝑛 + 𝑉′′′(Φ𝑛)
휁𝑛

2

2
+ ⋯

= 𝑓 − 𝛾
𝜕Φ𝑛

𝜕𝑡
− 𝛾

𝜕휁𝑛

𝜕𝑡
+ 𝜖1(𝐴(Φ𝑛) + 𝐴′(Φ𝑛)휁𝑛

+ ⋯ )cos 𝜔𝑡 + 𝜖2(𝐵(Φ𝑛) + 𝐵′(Φ𝑛)휁𝑛 + ⋯ )sin 𝜔𝑡 

(3.51) 
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If we again collect the leading fast varying terms in 휁𝑛 and if we assume that 

𝛥𝑛휁𝑛 = 0 and if we put that 𝜔0
2 = 𝑉′′(Φ𝑛) we can write following equation 

𝛾
𝜕휁𝑛

𝜕𝑡
+ 𝜔0

2휁𝑛 = 𝜖1𝐴(Φ𝑛)cos 𝜔𝑡 + 𝜖2𝐵(Φ𝑛) sin 𝜔𝑡 

 

 

where 𝜔0 is eigen frequency. After transient time 𝑡 ≫ 𝛾 𝜔0
2⁄  we get the solution to the 

equation (above eq.) as following 

휁𝑛(𝑡) = 𝜖1𝐴
𝜔𝛾 sin(𝜔𝑡) + 𝜔0

2 cos(𝜔𝑡)

𝜔2𝛾2 + 𝜔0
2 − 𝜖2𝐵

𝜔𝛾 cos(𝜔𝑡) − 𝜔0
2 sin(𝜔𝑡)

𝜔2𝛾2 + 𝜔0
2  (3.52) 

If we input equation (3.51) into (3.52) and take the average 〈·〉 ∶= 1/𝑇 ∫ 𝑑𝑇
𝑇

0
, 

T= 2𝜋 𝜔⁄  we can obtain following effective equation 

𝛾
𝜕휁𝑛

𝜕𝑡
− 𝛥𝑛Φ𝑛 + 𝑉′(Φ𝑛) +

𝜖1
2𝐴2(Φ𝑛) + 𝜖2

2𝐵2(Φ𝑛)

4(𝜔0
4 + 𝜔2𝛾2)

𝑉′′′(Φ𝑛)

= 𝑓 + 𝜖1𝐴′(Φ𝑛)
𝜖1𝐴(Φ𝑛)𝜔0

2 − 𝜖2𝐵(Φ𝑛)𝛾𝜔

2(𝜔0
4 + 𝜔2𝛾2)

 

+ 𝜖2𝐵′(Φ𝑛)
𝜖1𝐴(Φ𝑛)𝛾𝜔 + 𝜖2𝐵(Φ𝑛)𝜔0

2

2(𝜔0
4 + 𝜔2𝛾2)

, 

(3.53) 

If we compare equation (3.51) and (3.53) we can write following expressions 

〈𝑉′′(Φ𝑛)휁𝑛〉 = 0,                     〈휁𝑛
2〉 =

𝜖1
2𝐴2(Φ𝑛) + 𝜖2

2𝐵2(Φ𝑛)

2(𝜔0
4 + 𝜔2𝛾2)

, 

 

 

〈휁𝑛cos (𝜔𝑡)〉 =
𝜖1𝐴(Φ𝑛)𝜔0

2 − 𝜖2𝐵(Φ𝑛)𝛾𝜔

2(𝜔0
4 + 𝜔2𝛾2)

, 
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〈휁𝑛sin (𝜔𝑡)〉 =
𝜖1𝐴(Φ𝑛)𝛾𝜔 + 𝜖2𝐵(Φ𝑛)𝜔0

2

2(𝜔0
4 + 𝜔2𝛾2)

, 

 

 

If we choose for potential following expression 𝑉(𝜙) = (1 − 𝜖3)(1 −

cos 𝜙) + | sin(𝜙/2) |, 𝐴 = sin 𝜙, 𝐵 = − cos 𝜙, and assuming that 𝜓 = 2𝜙, 𝜏 = 4𝑡, 

𝑦 = 2𝑥, 𝜔 = 𝛺/2 we can write equation (3.50) as follows  

𝜕𝜓

𝜕𝜏
−

𝜕2𝜓

𝜕𝑦2
+ | sin

𝜓

2
|′

= 𝜖1 sin 𝜓 cos 𝜔𝑡 + 𝜖3 sin 𝜓 − 𝜖2 cos 𝜓 sin 𝜔𝑡 − 𝛾
𝜕𝜓

𝜕𝜏
  , 

(3.54) 

If we choose now that 𝑓 = 0 and we take for  𝜖1 = ℎ̃+
2 + ℎ̃−

2 , 𝜖2 = ℎ̃+
2 − ℎ̃−

2  

and for 𝜖3 = 2ℎ̃+ℎ̃−, where ℎ̃+and ℎ̃− are rescaled left and right circularly polarized 

magnetic field amplitudes we can write following expression  

𝜕𝜓

𝜕𝜏
−

𝜕2𝜓

𝜕𝑦2
+ |sin

𝜓

2
|

′

 

= ℎ̃+
2 + ℎ̃−

2 sin 𝜓 cos 𝜔𝑡 + 2ℎ̃+ℎ̃− sin 𝜓 − ℎ̃+
2

− ℎ̃−
2 cos 𝜓 sin 𝜔𝑡 − 𝛾

𝜕𝜓

𝜕𝜏
 , 

 

(3.55) 

From this equation we obtain the following expression for effective potential  

𝑉𝑒𝑓𝑓 = 2ℎ̃+ℎ̃− cos 𝜓 + |sin
𝜓

2
| −

ℎ̃+
2 ℎ̃−

2

2𝜔2
cos 2𝜓 , (3.56) 

If we now take for 𝜓 2⁄ = 𝜙𝑏, 𝜔 = 𝛺/2, and ℎ± = √𝛥𝜒ℎ̃± we obtain the 

same equation as equation 5.11 
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𝑉𝑒𝑓𝑓(𝜙𝑏) = 2𝛥𝜒ℎ+ℎ− cos 2𝜙𝑏 + |sin 𝜙𝑏| − 2
𝛥𝜒2ℎ+

2 ℎ−
2

𝛺2
cos 4𝜙𝑏 , (3.57) 

Using this equation we can explain the different behavior of our system 

depending on the following conditions: 

A) If 𝛺 ≫ 1 and 2𝛥𝜒ℎ+ℎ− ≫ 1 first term in equation (3.57) will dominate i.e. 

𝑉𝑒𝑓𝑓(𝜙𝑏) = 2𝛥𝜒ℎ+ℎ− cos 2𝜙𝑏 and the minima of potential energy will appear 

at 𝜋 2⁄ , 3𝜋 2⁄ . That means that the 𝜋-kink will connect two standing positions 

of the ribbon. In Figure 5.2.3 (Chapter 5.2) this region is represented on the 

bottom of the graph for field frequency of ν= 30 Hz i.e. ω/2π=Ω=30 Hz 

 

Figure 3.3: here we show the dependence of effective potential for condition show in A). The 

kink will connect two standing positions. The small scheme above shows a characteristic kink 

profile. 

B) When the prefactor in the last term dominates i.e. 2𝛥𝜒ℎ+ℎ− ≫ 𝛺2 

i.e. 𝑉𝑒𝑓𝑓(𝜙𝑏) ≈ − cos 4𝜙𝑏, the minima of the potentials are in 0, 𝜋/2, 𝜋 etc. 

and we can obtain 𝜋/2-kinks. In Figure 5.2.3 (Chapter 5.2) this region is 

represented in the middle of the graph for field frequency of ν= 20 Hz i.e. 

ω/2π=Ω=20 Hz. 
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Figure 3.4: here we show the dependence of effective potential for the condition shown in B). 

For the condition shown in B) we have now minima both at 𝜋/2 and 𝜋 at the same time. 

C) If 𝛥𝜒 = 0 i.e.  𝑉𝑒𝑓𝑓(𝜙𝑏)~|sin 𝜙𝑏|, the minima will appear at 0, 𝜋, 2𝜋 etc. and  

therefore we obtain 𝜋-kinks. In Figure 5.2.3 (Chapter 5.2) this region is 

represented on the top of the graph for field frequency of ν= 11 Hz i.e. 

ω/2π=Ω=11 Hz. 
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Figure 3.5: here we show the dependence of effective potential for the condition shown in C). 

The kink will connect two lying positions. The small scheme above shows a characteristic kink 

profile. 
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4 Experimental setup 
In this chapter we will outline the most important parameters of experimental 

setup and configuration of the external magnetic field used in experiments presented in 

Chapter 5. In Chapter 2 one can find experimental results from several groups that were 

used as motivation for this thesis. In our experimental work we follow the basic idea 

and organization of experiments as performed by this group. In our experiment we 

make some change comparing to them. These changes have been outlined in this 

chapter and in more details, concerning the materials and methods used in our 

experiment, in Chapter 6 (materials and methods). This chapter will be organized in the 

same way as Chapter 6 i.e. in the way that reader can easily find all necessary 

information for fully understanding of the experimental results. 

4.1 Friction-controlled bending solitons as folding 

pathway toward colloidal clusters 

Superparamagnetic particles were added to the Petri dish and due to gravity 

they were sedimented at the bottom. Due to interplay between gravity and repulsion 

with the glass surface, particles stay mobile and levitate above the glass surface at the 

few nanometers distance. Applying dynamic magnetic field (𝑯(𝑡) = 𝐻𝑒𝑥) in the 

direction of the x-axis particles will organize in the chains parallel to the lines of the 

magnetic field. When chains reach certain length (≥25 particles) we apply the dynamic 

magnetic field in the direction of the y-axis with phase difference of 900, creating the 

rotating magnetic field in x-y plane  (𝑯(𝑡) = 𝐻(cos 𝜔𝑡𝑒𝑥 + 𝑐𝑜𝑠𝜔𝑡𝑒𝑦)). In Figure 4.1 

we outline the schematic representation of the rotating magnetic field and the sketch of 

the magnetic coils configuration. More details one can find in the Chapter 5.3.1 and in 

the Chapter 6.2.1. All experiments were visualized with the polarization microscope 

Leica DM 2500P using a 100x oil immersion objective and 0,55x C-mount. Videos 

were recorded with the help of the digital color camera Basler A311fc at 30 frames per 

second. More details can be found in Chapter 6.1.3 
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Fig 4.1: a) Schematic representation of the arrangement of the three perpendicularly 

orientated solenoid coils with the soft iron core and b) initial position of the chain of the 

paramagnetic particles and the combined rotating magnetic field H parallel to the x-y plane  

4.2 Dynamic conformations of self-assembled helical 

ribbons 

Superparamagnetic particles were added to the Petri dish and due to the gravity they 

were sedimented at the bottom. Due to interplay between gravity and repulsion with the 

glass surface, particles stay mobile and levitate above the glass surface at the few 

nanometers distance. Applying time varying magnetic field H in the direction of the x-

axis particles will organize in the chains parallel to the lines of the magnetic field. 

When chains reach certain length (≥40 particles) we apply the dynamic magnetic field 

in the direction of the y-axis with a phase difference of 900, creating the dynamic 

magnetic field that will induce attractive force between the chains in the direction of y-

axis. Thus we are able to create structures that consist of two chains in direct 

connection (further for this structure we use the name ribbon). Naturally this process 

can lead to the structures that have a nucleation seed of chains in third and forth layer. 

The methods of healing of these structures are discussed in more details in the Chapter 

5.3.3. When the ribbon is created, we apply the dynamic magnetic field in the direction 

of z-axis creating rotating magnetic field in y-z plane. A time dependent magnetic field 

that drive our system is 𝑯(𝑡) = �̂�(cos 휃𝑒𝑥𝑡𝑒𝑥 + sin 휃𝑒𝑥𝑡√2(1 − є)𝑒𝑦 cos  (𝛺𝑡) +

sin 휃𝑒𝑥𝑡√2(1 + є)𝑒𝑧sin (𝛺𝑡)), were  휃𝑒𝑥𝑡 is the average precession angle and є is the 
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eccentricity that moves around the director along the x-axes. Depending on the 

frequency of the magnetic field we vary the eccentricity of the magnetic field in the 

direction of the z-axis. More details can be found in Chapter 5.3.2 and in Chapter 6.2.2. 

In Figure 4.2 we outline the schematic representation of the circularly polarized 

magnetic field (4.2a)) and elliptically polarized magnetic field (4.2b)). The sketch of 

the magnetic coils configuration is the same as presented in Figure 4.1a). All 

experiments were visualized with the polarization microscope Leica DM 2500P using a 

50x oil immersion objective and 0,75x C-mount. Videos were recorded with the help of 

a digital color camera Basler A311fc at 30 frames per second. More details can be 

found in Chapter 5.1.3 

 

 

Fig 4.2: a) schematic representation of the circularly polarized magnetic field is marked with 

the pink line, red lines represent field modulation in the direction of z-axis and blue lines 

represent field modulation in the direction of the y-axis and b) schematic representation of the 

elliptically polarized magnetic field is marked with the pink line, the red line represents field 

modulation in the direction of the z-axis and the blue line represent field modulation in the 

direction of y-axis. 

4.3 Healing of the ribbons, frequency and eccentricity dependent 

colloidal structures  

We repeat the similar procedure as it was described in Chapter 4.2. One 

difference compared to the previous method is the elliptical field in the direction of the 

y-axis. In Figure 4.3 we outline the schematic representation of the elliptically 

polarized magnetic field in the direction of the y-axis. All experiments were visualized 

with the polarization microscope Leica DM 2500P using a 50x oil immersion objective 
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and 0,75x C-mount. Videos were recorded with the help of a digital color camera 

Basler A311fc at 30 frames per second. More details can be found in Chapter 5.1.3 

 

Fig 4.3: schematic representation of the elliptically polarized magnetic field is marked with the 

pink line, the red line represents field modulation in the direction of the z-axis and the blue line 

represents field modulation in the direction of the y-axis. 
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5 Experimental results 

5.1 Friction-controlled bending solitons as folding 

pathway toward colloidal clusters 

 In this chapter we will present different conformational transitions of an 

ensemble of magnetic particles from a linear chain to a compact cluster when subjected 

to modulations of an external magnetic field. We show that the transient dynamics 

induced by switching the field from static to rotating are governed by the relative 

friction of adjacent particles in the chain. In this chapter we show that difference in 

relative friction results in different pathways. As we mention in Chapter 2.3.3, solid 

particles show bending solitons counter-propagating along the chain while buckling of 

the chain is the mechanism preferred by ferrofluid droplets. By combining real-space 

experiments with numerical simulations we unveil the underlying mechanism of 

folding pathways in driven colloidal systems. combining two different experiments 

with numerical simulations, we clearly show that the chosen pathway depends on the 

differences in relative friction. The results presented in this chapter have been 

published in the journal Europhysics Letters (N. Casic et al. 2010 EPL 90 58001) 

5.1.1 Introduction 

Folding pathways in conformational space are crucial to understanding protein 

folding [1-5]. The pathway of a protein from its unfolded to the biological relevant 

folded conformation has been described as a statistical path through the multi-

dimensional energy landscape in conformational space. Rate-determining regions of 

such paths are the saddle points in the energy landscape passed by the folding pathway 

[6]. More than one saddle point generically leads to a multi-exponential relaxation 

process. Cross correlations of stochastic forces occurring due to the collision of solvent 

molecules with the protein give rise to hydrodynamic frictional forces which could 

affect the chosen pathway. Hydrodynamic friction may thus play an important role in 

polymer [7] and protein [8] folding by speeding up the folding process. Colloidal 

suspensions are mesoscopic systems, where complex structures and dynamics resulting 

from simple and tunable interactions between individual particles can be studied in real 

space. Thus they have been used as models for crystalline assemblies [9], glasses [10], 
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van der Waals crystals [11], phononic crystals [12] and dipolar chains [13]. Colloidal 

chains might, however, also serve as a model system for folding pathways. 

As mentioned previously (in Chapter 2.3.1 and 2.3.2), in an external magnetic 

field, chains of paramagnetic particles can rotate synchronously with magnetic field, 

with a phase lag angle, or they can break into shorter chains which then rotate 

synchronously with the field. In our experiment we also notice breaking of long chains 

into shorter ones. Further increases in frequency will lead to a novel type of behavior in 

which chain will curl into a cluster. In Figure 5.1.1 this behavior is present in the 

regions marked with red circles. Black squares mark the areas where the magnetic field 

is not strong enough to induce rotation of the chain. This is the area where 𝜆 > λ𝑐 

(equation 3.23) and chains are formed but thermal fluctuations of the particles in the 

chain still exist. Areas marked with blue triangles show the area in which chains will 

break again but rotation is not synchronous with the field. This is the region of chaotic 

behavior of the system, in which particles will collide with each other then rotate. In 

our experiment we make detailed observations and investigations of the area where 

chains curl into clusters (marked with red circles). We show that for paramagnetic 

colloidal chains interacting via time-averaged dipolar interactions not only the speed of 

folding [3, 4], but also the selection of the folding pathway are controlled by the 

complexity of the friction between the particles during the conformational transition. 
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Fig 5.1.1: Experimental observation of the system for different value of frequency and 

magnetic field. Red circles show the area for which curling is observed. Area with blue 

triangles shows breaking of the chains when submitted to high magnetic field. In this area 

chains will break into doublets due to chaotic movement of the particles. Black squares show 

area in which no curling or rotation of the chain is observed in experimental time. 

Here we will present the conformational change of a 1D assembly of magnetic 

particles from a pearl chain to a cluster. We realize a 1D chain by applying a static 

magnetic field (for the preparation of the chain, see Chapter 6.2.1) and force the 

particles into a 2D compact cluster by suddenly switching from a static to a rotating 

field. At high rotation frequencies, the pearl chain curls up into two spirals wrapping 

the chain into a cluster. We show that the dynamics of the curling-up of the pearl chain 

can be understood by two localized bending solitons moving from both ends of the 

pearl chain toward the center. The longer folding pathway via the bending solitons is 

preferred over the shortest pathway consisting of a buckling of the chain, the latter 

being suppressed by the friction between adjacent particles. 
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5.1.2 Results and discussion  

We apply an external magnetic field using two coils perpendicular to each 

other (ex, ey directions), mounted on an optical microscope (More details can be found 

in Chapter 4.1 and Chapter 6) [14, 15]. In a rotating magnetic field of angular 

frequency ω, H= H(cosωtex +sinωtey), the particles acquire a magnetic moment m(ω) 

=V 𝜒𝑒𝑓𝑓 (ω) ·H(ω) proportional to the field, with 𝑉 = (4/3)𝜋𝑎3 being the particle 

volume and where 𝜒𝑒𝑓𝑓(ω)=3(µp-µs)/(µp-2µs) is the effective dynamic magnetic 

susceptibility. Here µs and µp are the permeabilities of the solvent and the particle, 

respectively [24].  

The dipolar interaction energy between the induced moments of two equal 

particles located at 𝒓1(𝑡) and 𝒓2(𝑡) is 

𝑊 =
𝜇0

4𝜋
𝒎(𝒓1(𝑡))𝒎(𝒓2(𝑡)):

3𝒓(𝑡)𝒓(𝑡) − 𝑟2𝟏

𝑟5
 , (5.1) 

where 𝒓(𝑡)  =  𝒓1(𝑡) − 𝒓2(𝑡) is the separation of the dipoles. Such interaction results 

in a relative particle motion at a typical shear rate of magnitude Ω. The dipolar 

interaction energy will have a minimum value when the two dipoles are aligned with r 

and maximum when they are perpendicular. As a consequence of this behavior 

preferential aggregation of particles into chains will be in the direction of the field. The 

dimensionless Mason number 𝑀𝑛= ηω/μ0χ
2H2 characterizes the ratio of viscous vs. 

magnetic interactions [16], where η =10−3 Nsm−2 denotes the water viscosity (For more 

details about the Mason number, see Chapter 3.4). The viscous dissipated power 

𝑃𝑣𝑖𝑠𝑐  ∝ 𝑟3휂𝛺2cannot exceed the driving magnetic power 𝑃𝑚𝑎𝑔𝑛  ∝  𝑟𝑎2𝜇0𝜒2𝐻2𝛺 such 

that the shear rates must be always smaller than 

𝛺

𝜔
<

𝑎2

𝑟2
 𝑀𝑛 − 1 (5.2) 

If 𝑀𝑛 is low, Eq. (5.2) can be satisfied at shear rates Ω = ω for conformations 

with particle separations 𝑟 < 𝑎𝑀𝑛−1/2 and the motion is synchronous with the 

magnetic field. Hence for 𝑀𝑛 < 1, the time-dependent dipolar energy, 
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𝑊 = −2 
µ0

4𝜋
 𝑚2𝑃2

cos 𝜑(𝑡)

𝑟(𝑡)3
 , 

 

(5.3) 

can be minimized by an instantaneous minimal conformation 𝜑(𝑡)  = 𝜑0 of the 

particles that synchronously rotate with the field and the magnetic moment. Here 𝜑(𝑡) 

denotes the angle between the magnetic field and the particle separation and 𝑃2(𝑐𝑜𝑠 𝜑) 

is the second-order Legendre polynomial. Instantaneous minimal conformations are 

pearl chains oriented parallel to the field. Increasing 𝑀𝑛 (i.e., ω) the synchronous 

rotation is possible only for clusters with smaller size, while larger assemblies fragment 

into smaller assemblies. The shapes of synchronously rotating assemblies and their 

fragmentation upon adiabatic increase of 𝑀𝑛 have been studied in detail in the 

literature [17-19] (more detail about Mason number one can find in Chapter 3.4). Here 

we are interested in the dynamics when suddenly switching to very large 𝑀𝑛, where 

even the smallest fragments cannot follow the field. If 𝑀𝑛 is very large, 𝑀𝑛 > 𝑀𝑐  ≈

1, synchronous shear rates can no longer be supported and the time scale of the motion 

of the particles separates from the time scale of the magnetic field, 

𝛺

𝜔
= 1 − √1 − (

𝑀𝑐

𝑀𝑛
)2 , (5.4) 

At high 𝑀𝑛 the magnetic dipole interaction between the particles can be 

averaged over a period of the magnetic field rotation at essentially fixed particle 

positions, 

𝑊 = −
𝜇0

4𝜋
𝒎(𝒓 1(𝑡))𝒎(𝒓2 (𝑡) ):

3𝒓(𝑡)𝒓(𝑡) − 𝑟2(𝒕)𝟏

𝑟5(𝑡)
 

 

(5.5) 

where the bar denotes the time average over one period. Conformations at high 𝑀𝑛 

hence minimize the time averaged dipole interaction in Eq. (5.5). For a magnetic field 

rotating around the z-axis the time-averaged outer vector product of the magnetic 
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moments is 𝒎(𝒓1(𝑡))𝑚(𝒓2(𝑡))  = m2(exex +𝒆y𝒆y)/2 and the dipole energy between 

the particles reads: 

𝑊 = 𝜇04𝜋𝑚2𝑃2(cos  𝜗) 𝑟3(𝑡)⁄  , (5.6) 

with 𝜗 being the angle between the particle separation vector and the axis of rotation. 

Minimal dipole energy conformations therefore correspond to clusters in the plane of 

rotation 𝜗 =π/2. Note that the structure of eq. (5.3) and eq. (5.6) only differ in sign 

and a factor of 2, as well as in the meaning of the angle in the second-order Legendre 

polynomial.  

Thus, a field rotating at high frequency compared to a static magnetic field just 

reverses the role of attraction and repulsion. The static dipole interaction is attractive 

along the principal axis (defined by the magnetic field) and repulsive in the plane 

perpendicular to it. The time-averaged dipolar interaction is repulsive along the 

principal axis (defined by the rotation axis) and attractive in the plane perpendicular to 

it. 

To assemble particles into a compact cluster, we suddenly switch the magnetic 

field from a static to a rotating in-plane field, 

𝑯(𝑡) {
𝐻𝑒𝑥,                                                            for 𝑡 < 0,
 𝐻(cos 𝜔𝑡𝑒𝑥 + cos 𝜔𝑡𝑒𝑦),                     for 𝑡 > 0,

 (5.7) 

where the electronic switching time (~ 20 ms) of our wave generator is much faster 

than the Brownian self-diffusion time (56 s)2.  

We observe two different transient scenarios for the paramagnetic colloids, 

depending on the value of  𝑀𝑛. As we already mention in Chapters 2.3.1 and 3.2.2, at 

low  𝑀𝑛, when switching to the rotating field, the pearl chains fragment into small 

                                                 

2 The paramagnetic colloids have self-diffusion coefficient D=0.14 μm2 s−1 and the time to 

diffuse double of their size d is τ =d2/D. 
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rotating assemblies. These small clusters with particle separations 𝑟 < 𝑎𝑀𝑛−1/2  

synchronously rotate with the external field and attract each other to reassemble into a 

larger circular cluster. For 𝑀𝑛 ≫ 1 no fragmentation of the pearl chains is observed. 

Instead, the chains start to bend in opposite directions on their two ends until the 

extremes of the chain form two equilateral triangles with the two adjacent particles 

(Figure 5.1.2, 𝑡 = 1 s). These equilateral triangles are the nucleation seeds of two 2D 

clusters that start to grow at the expense of the pearl chain by rolling up the chain from 

two sides (Figure 5.1.2, 𝑡 >  1 s). After formation of this triangles process of folding is 

irreversible i.e. the particles cannot be returned to the 1D chain configuration. We 

describe the chain dynamics in terms of the curve 𝜅(𝑠, 𝑡), where s denotes the arc 

length along the curling chain. The curvature 𝜅(𝑠, 𝑡)  =  |𝜕2𝑥/𝜕𝑠2| measures the shape 

of the curved chain and the bending rate �̇�(𝑠, 𝑡)  = 𝜕𝜅/𝜕𝑡 measures the change in shape 

upon bending. We use video-microscopy and particle tracking routines to obtain the 

individual particle position and extract �̇�(𝑠, 𝑡). The bending rate along the chain as a 

function of time is shown in Fig. 5.1.2. Initially the bending rate peaks with opposite 

signs at the two ends of the chain.  

Then the two peaks move with constant speed 𝑣 = 7.6 µms−1 (the step-like 

features in the peaks are due to the discreteness of the colloids) into the middle of the 

chain. When the bending soliton passes over a particular position in the chain this 

position is absorbed into the rolling 2D cluster. From the contour plot of the bending 

rate it follows that the pearl chain is subject to weak bending fluctuations which rattle 

the pearl chain before it is absorbed into one of the two rolling clusters where the 

bending fluctuations cease. Moreover, the 2D cluster shows an increased rigidity with 

respect to the pearl chain.  
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Fig. 5.1.2: Top: conformation of a pearl chain of 35 paramagnetic particles as a function of 

time in a rotating magnetic field (𝐻 = 900𝐴/𝑚, 𝜔 =  113 𝑠 −1). Bottom: conformation of a 

pearl chain of ferrofluid droplets as a function of time (H =1600A/m, ω =113𝑠 −1).). In both 

experiments the rotating field is switched on at 𝑡 = 0 𝑠. The folding is irreversible and a 

switching back from the rotating to the static magnetic field results in different conformational 

changes. 

As one can see from the last sequence frame (t=8 s) in the top part of Figure 

5.1.2, the 2D rolling cluster will, at the end, form one big cluster. This cluster will 

continue to rotate in the magnetic field with a frequency lower than the frequency of 

magnetic field. This is due to the characteristics of equation (5.6) in which attractive 

force will now act in the plane perpendicular to the principal axis (defined by the 

rotation axis) causing attraction between the neighboring particles. In the work of 

Tierno et al. it was shown that only particles located at the border of cluster will 

experience significant dipolar force, while for the particles in cluster interior, the 

dipolar interaction force arising from neighboring particles will cancel each other. 

Compared to the larger cluster, which are 2D assemblies’ doublets and chains are 1D 
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assemblies that cannot be shear deformed. Cluster rotation at high precession 

frequencies is caused by dissipative shear deformation, traveling around the cluster 

with the frequency of the precessing magnetic field. Due to internal relaxation 

processes that manifest themselves as peaks in ω ∝ χeff
′′ (Ω − ω), the cluster will rotate. 

Here χeff
′′  is the effective dynamic magnetic susceptibility tensor [14].  

In Fig. 5.1.3 we plot the speed v of the bending soliton vs. the field amplitude 

H for different field frequencies 𝜈 = 𝜔/2𝜋. The soliton speed scales like 

𝑣 ∝ 𝜔0𝐻−3/2 , (5.8) 

and is thus independent of 𝜔, showing a scaling exponent with H smaller than the 

exponent 2 occurring in the dipolar interaction (equation (5.3)). We measure the length 

of the pathway in conformational space as the average of the path lengths of the 

individual particles, e.g.: 

𝓛 =  
1

𝐿
∫ 𝑑𝑠

𝐿

0

∫ |�̇�(𝑠, 𝑡)|𝑑𝑡 (5.9) 



5 Experimental results 

70 

 

 

Fig. 5.1.3: Contour plot of the bending rate �̇� (𝑠, 𝑡) as a function of the arc-length s along the 

chain of paramagnetic colloids and the time t. 

 

Fig. 5.1.4: Bending soliton velocity 𝑣 as a function of the magnetic field strength H for 

different frequencies ν = ω/2π of the field rotation. The solid line is a fit according to eq. (5.8). 
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The pathway chosen by the particle chain is not the shortest path from a chain 

toward a cluster. In Fig. 5.1.6 we plot the dipolar internal energy U of an N-particle 

system along two different pathways. The first pathway of length ℒ𝑠𝑜𝑙  = 40 µm 

corresponds to the transition of the particle chain to the cluster via the bending solitons. 

The second pathway of length  ℒ𝑏𝑢𝑐𝑘 = 25 µm  is a transition of the chain to the cluster 

via a buckling of the chain. Both pathways end up in equivalent clusters and the dipolar 

energy monotonously decreases with the path length. Although the buckling takes a 

shorter path with larger driving force (𝐹 = −𝜕𝑈/𝜕𝓛 = 17 fN) than for the bending 

soliton (𝐹 = 10 fN), the particle chain takes the pathway of the bending soliton. The 

chosen pathway and the behavior of the bending solitons can be understood when 

considering the hydrodynamic friction arising along the different pathways.  

 

Fig. 5.1.5: Schematic draw of the area of the squeezing flow. One can see here that collapsing 

particles will squeeze out fluid remain between three interacting particles. Green arrow 

indicates Debye length (~10 nm) pointing that there is small gap between two particles. 

Buckling of the chain requires shear flow in the gap region between all 

consecutive paramagnetic particles. The particles following the bending soliton 

pathway can avoid relative motion between the surfaces of adjacent particles by rolling 

on each other. Only at the position of the bending soliton, where the particle chain is 

wrapped onto the cluster significant shear flow is produced by pumping out the fluid 

between the chain and the cluster (Figure 5.1.5). The gap region between two adjacent 

particles is dictated by the balance of magnetic dipolar attractions and electrostatic 

double-layer repulsion, thus it is of the order of the Debye length (∼10 nm) and much 
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smaller than the radius a of the particles. The hydrodynamic friction in such a region 

diverges with vanishing gap width and therefore dominates over the hydrodynamic 

friction that the particles have with the free water. This explains why the speed of the 

soliton does not change while moving along the particle chain. The driving force is 

roughly constant and the geometry near the bending soliton does not change. Hence the 

friction of the squeeze flow near the bending soliton remains similar. The friction with 

the free water that increases with the size of the cluster can be neglected. It would result 

in a decreasing soliton velocity. Higher magnetic fields increase the attraction between 

the particles and narrow the gaps between the particles. A smaller gap increases the 

friction for the relative particle motion and hence the friction coefficient 휁 increases 

with the magnetic field. The speed of the bending soliton 𝑣 = 𝐹/휁 is the ratio of the 

driving dipolar force 𝐹 ∝ 𝐻2 and the friction coefficient. A friction coefficient scaling 

like 휁 ∝ 𝐻1/2 is consistent with the experimental scaling in equation (5.8) for the 

bending soliton velocity. The buckling and folding processes were, until now, noticed 

only in aforementioned work presented in Ref. [18]. In the limit 𝑀𝑛 → ∞ (which is an 

approximation that we can also use), the magnetic rotation is faster than the chain 

response. They have found that chain will buckle when the viscous force exceeds the 

elastic force and for this condition the chain will both compress and bend. The response 

of the chain to this thrust of buckling is to fold onto itself and rotate synchronously as a 

folded structure. Both types of behavior are due to the effect that decreased length 

minimizes the drag torque. For explaining the mechanism of folding and buckling they 

consider magnetic interaction forces between segments in the chain that will interact in 

these processes. Large compression forces the chain in a way such that segments of the 

chain come closer to each other causing magnetic interaction between folded segments. 

We could not directly visualize the rolling of the beads on top of each other. 

However, indirect evidence is obtained by comparing the folding of solid colloids to 

that of liquid droplets. The buckling pathway does not require extensive shear flow if 

we replace the rigid magnetic particles with ferrofluid droplets. Such droplets can be 

considered to have a free droplet surface when their size 𝑎𝑑𝑟𝑜𝑝 exceeds the viscous 

length scale 𝑎𝑑𝑟𝑜𝑝  > 휂𝑠/휂 ≈  1 µm, where 휂𝑠 denotes the surface shear viscosity of 

the droplet [20]. Convection rolls inside the magnetic droplets reduce the friction 

between the adjacent surfaces of the droplets. Figure 5.1.2 (bottom) shows the 

transition from a polydisperse pearl chain of ferrofluid droplets towards a cluster. 

Contrary to the rigid particles the ferrofluid droplets follow the shorter buckling 

pathway. We have performed also experiments with bidisperse particles to check 
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whether polydispersity could affect the chosen pathway since the ferrofluid droplets are 

polydisperse, but we observe no difference with the monodisperse case. 

We support the experimental results with fluid particle simulations where the 

particles are treated as a part of a liquid of much larger viscosity [21, 22]. We also 

simulated the dynamics of „slippery”beads by using the method of hydrodynamic 

interactions between point-like particles in the Rotne-Prager approximation [23]. These 

simulations (More details can be found in Chapter 3.5) confirm the importance of 

friction for the choice of the folding pathway. 

 

 

Fig. 5.1.6: Time-averaged dipolar energy of a 35-particle assembly changing from an 

extended chain to a cluster along two different pathways. The simulations (solid lines) are 

computed assuming pairwise additivity of the dipole interaction. The pathway of the steepest 

descent corresponds to a buckling of the chain. The experimentally observed pathway (circles) 

of the bending soliton is longer and corresponds to a smaller driving force. The longer pathway 

is preferred because of the rolling friction between the particles is lower than the sliding 

friction. 
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5.1.3 Conclusion 

In conclusion we have shown that in our colloidal system the kinetics of 

folding is dominated by the different friction arising along the slopes of the energy 

landscape rather than by transition rates over flat saddle points. The short pathway from 

a pearl chain toward a cluster via the buckling of the chain is suppressed by the friction 

of relative motion between the adjacent surfaces of the particles and not by presence of 

barriers in the energy landscape. The system therefore avoids the pathway of the 

steepest descent and chooses an alternative longer pathway via the bending soliton that 

minimizes the friction. We confirm these findings by two experiments with different 

systems. In the system of solid spheres the system follows the lower friction pathway 

(not the shortest pathway). In the system of ferrofluid droplets the system chooses the 

lower energy pathway. These findings were supported with agreeable numerical 

simulations which were able to confirm experimental results. In this way we confirm 

our results both theoretically and experimentally.   
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5.2 Dynamic conformations of self-assembled helical 

ribbons 

In Chapter 5.1 we have studied the behavior of a 1D chain of paramagnetic 

particles in an external rotating magnetic field. This magnetic field was applied in the 

x-y plane. Now we want to study the dynamics of self-assembled and propelled ribbon 

(which consists of two paramagnetic chains in direct connection and aligned with the 

direction of the static magnetic field) formed from paramagnetic colloids in a dynamic 

magnetic field (Chapter 4.2 and 6.2.2). The sedimented ribbon assembles due to time-

averaged dipolar interactions between the beads. After the ribbon was assembled we 

applied the rotating magnetic field in y-z plane. The time dependence of the dipolar 

interactions together with hydrodynamic interactions causes a twisted ribbon 

conformation. Domain walls of high twist connect domains of nearly constant 

orientation and negligible twist and travel through the ribbon. The particular form of 

the domain walls can be controlled via the frequency and the eccentricity of the 

modulation. The flux of twist walls - a true ribbon property absent in slender bodies - 

provides the thrust onto the surrounding liquid that propels this biomimetic flagellum 

into the opposite direction. The propulsion efficiency increases with frequency and 

ceases abruptly at a critical frequency where the conformation changes discontinuously 

to a flat standing ribbon conformation. The results presented in this chapter have been 

published in the journal Physical Review Letters (PRL 110, 168302 (2013)). 

5.2.1 Introduction 

The coupling of hydrodynamics to the conformation of a flexible object 

embedded into a viscous fluid is a question of interest for understanding the mechanism 

of self-propulsion of biological [99, 100] as well as biomimetic [60] micromotors. 

Finding the conformational path of the flexible object to induce efficient propulsion 

[101-104] guides one to the most intelligent design [105] of the motor that leads to 

optimal performance. Once understood one is able to artificially produce [106] and 

rebuild [60, 107] biomimetic motors. These propel according to commands by 

enforcing desired conformational transitions from one to another shape. For a slender 

motor propelled by surface waves the most efficient motor shape is a helix winding at 

an angle of 45o around the helix axis with amplitude comparable to the wavelength 

[108]. 
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Top-down [109] and bottom-up concepts are two ways in achieving the 

desired conformational path. Following the first concept one stiffens the motor at 

places where no movement should occur and builds in joints where conformation 

changes are desired. Bibette and coworkers [60] have used paramagnetic colloidal 

beads. Joints between the beads were built from DNA linkages between the beads. The 

top-down built in joints provided bending rigidity to the swimmer. When the bending 

rigidity was such that this low Reynolds number swimmer behaved semiflexible in a 

viscous fluid, then nonreciprocal conformation changes of the neutral line of the 

colloidal chain gave the necessary thrust for a directed motion. Slender body 

hydrodynamics, i.e. treating the swimmer as a one dimensional curve, was sufficient to 

explain the propulsion of this swimmer. The sperm number measuring the ratio of 

elastic bending versus viscous torques is the relevant quantity deciding on the 

efficiency of the propulsion of Bibette’s swimmer. The cross section of the colloidal 

chain and its torsional rigidity on the other hand were irrelevant for understanding the 

propulsion. 

Alternatively one might exploit the coupling of hydrodynamics and the 

attractive interactions between building blocks of the deformable object to dynamically 

self-assemble the desired shape in a bottom up manner. Snezhko and Grzybowski [72, 

110] created self assembled snakes and highly organized rings that resulted in an 

efficient propulsion of both structures. Since their swimmers propelled at high 

Reynolds numbers, non-reciprocity of the motion is not a requirement and the motion 

of these swimmers is much more efficient than that of low Reynolds number 

swimmers. 

In our work we follow the bottom-up approach of Snezhko [72] using the 

same magnetic beads as Bibette [60] that propels at low Reynolds number because of 

its finite cross section. In our experiment an external magnetic field drives the dynamic 

nonlinear self-assembly of paramagnetic colloids to a biomimetic at or chirally twisted 

magnetic colloidal ribbon. In contrast to Bibette's top down swimmer our low Reynolds 

number bottom up swimmer is fully self assembled. No DNA-links are used and in 

principle the colloids are free to attain any conformation. Here the interaction of the 

ribbon with the surrounding fluid provides a feedback mechanism that stabilizes or 

destabilizes the ribbon conformation that is responsible for the motion. 
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5.2.2 Results and discussion  

Mathematically a ribbon differs from a one dimensional curve since it 

additionally has a one dimensional cross section. While a curve can bend and wind a 

ribbon can additionally twist. The conformation of a ribbon can be described by its 

twist and its writhe. Calugareanus theorem [111] states that the sum of the twist - a 

local ribbon property - and writhe - a global conformation property of the neutral line 

and thus a curve property – add up to a conserved quantity, the link number of the 

ribbon. As beating cilia or flagella can be well described by one dimensional curves. 

They propel entirely by changes in writhe. In our ribbons writhe is not important. In 

fact the neutral line of our ribbon remains essentially a straight line and does not 

undergo conformation changes. What matters in our swimmers is the orientation of the 

ribbon cross section. The ribbon does not propel along its major axis in the flat 

conformation, but propels in the twisted conformation. Since twist is a local ribbon 

property we can define the twist density as well as a flux of twist. Open ends of the 

ribbons allow a steady flux of twist through the ribbon. A parametrically modulated 

magnetic torque acting on the colloidal ribbon serves as a control parameter for the 

dynamically self-assembled shape. Shape transition occurs in the forms of π- or π/2-

walls that travel along the ribbon. The relevant number to describe the propulsion of 

our ribbon is the ratio of twist- and viscous torques and not the sperm number as for 

Bibette's swimmer. Hence our swimmer is propelled by an entirely different ribbon 

specific mechanism. 
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Fig. 5.2.1: Top: Microscopy image (top view) of a healed colloidal ribbon on a glass surface. 

The ribbon prepared at a frequency of Ω/2π < 18Hz and є ≈ −0,05 lies in an untwisted 

conformation. Ω/2π = 11 − 40Hz: Microscopy images (top view) of the conformation of the 

ribbon for different frequencies and an eccentricity of є ≈ +0,05. At the highest frequency 

Ω/2π = 40Hz the ribbon is standing on the glass surface with an angle of𝜙𝑏(𝑥) =2π. At low 

frequencies lying domains (sketched in red in the scheme at the bottom) are separated by π -

walls (sketched in gray) that when approaching Ω/2π < 40Hz split into π/2-walls separating 

lying from standing (cyan in the sketch) domains. 

The magnetic field H(t) induces excess magnetic moments 𝑚(𝑡) =  휂0𝑉𝜒𝐻(𝑡) 

in the particle ensemble. Here 휂0 denotes the permeability of vacuum, V the volume of 

the ensemble and χ the effective susceptibility. The magnetic moments of the beads 

hence interact via dipolar interactions. The dimensionless Mason number 𝑀𝑛 =

휂𝛺/휂0𝜒2𝐻2characterizes the ratio of viscous vs. magnetic interactions, where η=10-3 

Nsm-2 denotes the water viscosity, and the modulation frequency at which the direction 

of the magnetic field changes. The viscous dissipated power 𝑃𝑣𝑖𝑠𝑐 ∝ 휂𝑟3𝜔2of a bead 

moving at a rate ω and distance r around another bead cannot exceed the driving 

magnetic power 𝑃𝑚𝑎𝑔𝑛 ∝ 𝑟𝑎2휂0𝜒2𝐻2𝛺 of the beads of radius a such that the shear 

rates ω must be always smaller than 𝛺𝑎/𝑟𝑀𝑛1/2. At the conditions used here the 

Mason number is large 𝑀𝑛 > 1 and the motion of the beads is with a lower rate ω < Ω 
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than that of the magnetic field for any separation 𝑟 >  𝑎 of the beads. This rate ω < Ω 

of the beads occurs because viscous forces are too strong to allow for a synchronous (ω 

= Ω) motion. In fact, the Mason number must be chosen large enough to ensure the 

integrity of our ribbon. Angular frequencies larger than Ω/2π > 11Hz were necessary to 

prevent disintegration of the chains in the ribbon. Above this lower bound the intra 

particle dynamics is slow compared to the modulation of the external field. The 

separation of time scales allows us to also separate dynamic conformational variables 

of the particle assembly into larger slow and smaller fast components. 

Our system is driven by a time dependent magnetic field  𝑯(𝑡) =

�̂�(cos 휃𝑒𝑥𝑡𝒆𝑥 + sin 휃𝑒𝑥𝑡√2(1 − є)𝒆𝑦 cos  (𝛺𝑡) + sin 휃𝑒𝑥𝑡√2(1 + є)𝒆𝑧sin (𝛺𝑡)) of the 

average precession angle 휃𝑒𝑥𝑡 and eccentricity є that moves around the director along 

the x-axes. In this external field we consider a pair of paramagnetic beads separated by 

the bond vector  𝒓𝑏 = 𝑟𝑏(cos 휃𝑏 , sin 휃𝑏cos 𝜙𝑏 , sin 휃𝑏sin 𝜙𝑏), where 휃𝑏, and 𝜙𝑏 are the 

polar and azimuthal angle of the bond vector (figure 5.2.2). The dipolar energy of this 

pair is then given by 𝑊(𝑡) = −
𝜂0𝑉2𝜒𝑏𝑒𝑎𝑑

2 𝐻2(𝑡)

4𝜋𝑟𝑏
3 𝑃2(cos 𝛾(𝑡)), were 𝛾(𝑡)denotes the time 

dependent angle between the magnetic field and the bond vector. The time averaging of 

this interaction can be done most easily by measuring both the orientation of the 

magnetic field and the bond vector with respect to the director. We find the time 

averaged dipolar interaction between two beads to be well described by  

�̅� = −
휂0𝑉2𝜒𝑏𝑒𝑎𝑑

2 �̂�2(𝑡)

4𝜋𝑟𝑏
3 𝘹 (𝑃2(cos 휃𝑒𝑥𝑡)𝑃2(cos 휃𝑏)

− є𝑃2
2(cos 휃𝑒𝑥𝑡)𝑃2

2(cos 휃𝑏) cos  (2𝜙𝑏)) 
(5.10) 

where 𝑃2 and 𝑃2
2 are Legendre polynomials of degree 2 and associated Legendre 

polynomials of degree 2 and order 2. We started our experiments with a magnetic field 

of �̂� = 2200A/m, a precession angle of 휃𝑒𝑥𝑡 =π/6 and negative eccentricities є ≈

−0,05. Under such circumstances the time averaged dipole interactions are attractive 

for a pair of beads separated along the x-direction (휃𝑏 = 0), weakly attractive to 

indifferent along the y-direction (휃𝑏 =π/2, 𝜙𝑏 = 0), and repulsive along the z-direction 

(휃𝑏 =π/2, 𝜙𝑏 =π/2). Since the interaction is weak along the y direction collective 

demagnetization effects involving three or more beads play a role along this direction.  
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Yan et al [112] used those collective effects in magnetic Janus particles to 

form hollow tubes. Here these collective effects lead to weak attraction in the y-

direction between single chains, but to repulsion in the y-direction between a ribbon 

and a third chain or additional bead. At these conditions we can create ribbons of 

typical length of up to 50 beads per chain. Defects in the form of vacancies on the 

ribbon or adsorbed beads starting a third chain can be eliminated by using distinct 

frequencies of modulation and an annealing procedure described in Chapter 5.3. The 

top part in Figure 5.2.1 shows a microscopy image of such a ribbon. 
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Fig. 5.2.2: left scheme showing the definitions of angles defined between the director (green), 

the magnetic field and the bond vector. The magnetic field precesses on an ellipse (purple) that 

deviates from a circle (blue) but on average encloses the same angle 휃𝑒𝑥𝑡 as the average blue 

field vector with the director. The right image shows a color coded graph of the averaged 

dipole interaction of a pair of dipoles in various directions for negative eccentricity. Dipoles in 

this field form bonds in the attractive (purple) direction and avoid bonds in the repulsive (red) 

direction. Along the cyan direction the averaged dipole interaction is indifferent, and the 

formation of bonds or no bonds is decided by collective higher order effects. 

Once the ribbon is healed of defects we switch to a modulation with positive 

eccentricity 0 < є << 1. Positive eccentricity turns the y direction repulsive and the z 

direction attractive favoring an orientation of the ribbon in an upright position. Due to 

the spontaneous symmetry breaking twisting of the ribbon can happened at the 

beginning, at the end or at the beginning and at the end of the ribbon synchronously. If 

the twist of the ribbon, which will produce the domain wall, happened synchronously at 

beginning and at the end of the chain, domain wall will travel towards each other as a 

kink and anti-kink. When kink and anti-kink meat each other they will annihilate. This 

meeting point where annihilation occurs is, in the most of the circumstances, at the 

center or close to the center of the ribbon. After some period of the time system will 

stabilize. This will lead to the case were only kink or anti-kink will appear which is 

presented on the Fig. 5.2.1 and further discussed in this chapter. Appearance of the kink 

and anti-kink can be very good indicator for the spontaneous symmetry breaking and 

denies the influence of other factors such as field gradient in the system. 
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Fig. 5.2.3: Space time plot of the orientation angle 𝜙𝑏(x,t) for a frequency Ω=2 π 𝘹 27 Hz. 

Spontaneously broken symmetry will lead to formation of the domain walls at the beginning 

and at the end of the ribbon. Domain walls created on this way will travel towards each other 

as a kink and anti-kink and annihilate at the center or close to the center of the ribbon.  

Figure 5.2.1 (40Hz) shows the conformation of the ribbon for positive 

eccentricity є ≈ 0,05 at a frequency of 40 Hz and a magnetic field of �̂�= 2200A/m 

sufficiently strong as to force the ribbon against gravity into an upright conformation. 

The frequency is high and the separation of the field modulation frequency from the 

rate of rotation of the ribbon is strong enough as to wipe out all dynamic effects of the 

modulation onto the ribbon. This is no longer the case if we decrease the modulation 

frequency. Dynamic torques arising due to dipolar interactions may now distort the 

conformation described by the tangent vector to the neutral line of the ribbon and the 

normal to the ribbon plane. The tangent vector of the neutral line of the ribbon remains 

along the x-axis and the structure is entirely described by the angle 𝜙𝑏(x) the normal 

vector to the ribbon plane encloses with the z-direction. For frequencies below a full 

separation of time scales twist walls between subsequent quasi-stable orientations 

travel in the form of solitons with a speed 𝑣𝑤𝑎𝑙𝑙 through the ribbon. For low 

frequencies 11Hz < Ω/2π< 18Hz such walls are π-walls connecting a lying ribbon 

section with another lying ribbon section. For frequencies 18Hz < Ω/2π < 28Hz these 

π-walls split into two π/2-walls, the first connecting a lying section of the ribbon with a 
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standing section and the second connecting a standing section with a lying section 

twisted by π with respect to the first lying section. For frequencies 28Hz < Ω/2π < 

40Hz the π/2-walls merge again to π-walls that, contrary to the low frequency regime, 

connect two standing segments of the ribbon. Finally, above Ω/2π > 40Hz a standing at 

ribbon remains. 

In Figure 5.2.4 we show space time plots of the angle 𝜙𝑏(x,t) extracted from 

the videos of the ribbons for various frequencies. These space time plots show both the 

behavior of the twist walls traveling at relatively large velocities as well as the forward 

propulsion of the ribbon with a much smaller propulsion velocity opposing the motion 

of the kinks. A spatially more resolved version of the propulsion is shown in the inset 

of the top figure where the behavior around one end of the ribbon is shown. The space 

time plots span the range xb(t) < x < xe(t), where 𝑥𝑏,𝑒(𝑡) = 𝑥𝑏,𝑒
0 + 𝑣𝑝𝑟𝑜𝑝𝑡 denote the 

propelling beginning and end of the ribbon. The color coding of the plot encodes the 

angle 𝜙𝑏, red colors correspond to a lying (𝜙𝑏=0) section and cyan colors to standing 

(𝜙𝑏=π/2). The dominating color of the plot shows whether the ribbon is mainly lying or 

standing. Abrupt changes in color occur within the twist walls. π-walls connect regions 

of similar color while the color changes from red to cyan when passing a π/2-wall. 

From the space time plots it is evident that the conformation, wall and propulsion 

kinetics critically depends on the driving frequency. Twist walls are produced in a 

frequency range of 11Hz < Ω/2π < 40Hz. Only in this frequency range propulsion 

along the x direction is observed. 
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FIG. 5.2.4: Three space time plots of the orientation angle 𝜙𝑏(x,t) for different frequencies 

Ω=2 π 𝘹 11(20,30)Hz. Top: Lying domains (red) are separated by π-walls traveling along the 

ribbon (mathematical formulas explaining this kind of behavior one can find in Chapter 3.6 C). 

The inset magnifies the region of one end of the ribbon that counter propagates the π-walls 

with much lower speed. Middle: standing (cyan) domains are separated from lying domains 

(red) by π/2-walls (mathematical formulas explaining this kind of behavior one can find in 

Chapter 3.6 B). Bottom: standing domains (cyan) are separated by π-walls (mathematical 

formulas explaining this kind of behavior can be found in Chapter3.6 A). 
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Fig. 5.2.5: Plot of the domain-wall velocity, propagation velocity, and the geometric 

propulsion efficiency 𝑒 versus modulation frequency Ω/2π. 

In Figure 5.2.5 we plot the domain wall speed and the propulsion speed as a 

function of the modulation frequency. Domain walls exist only in the frequency band 

11Hz < Ω/2π < 40Hz and it is only in this regime where propulsion along the x-

direction is observed. We define a geometric propulsion efficiency 𝑒 =  𝑣𝑝𝑟𝑜𝑝/𝑣𝑤𝑎𝑙𝑙 

analogue to the one defined in [113] that differs from the power efficiency defined by 

[101]. It measures the distance a ribbon propels during the motion of one domain wall 

by the wavelength of the structure. The third graph in Figure 5.2.5 plots this geometric 

efficiency versus modulation frequency. The efficiency increases with frequency. We 

may reformulate the efficiency in terms of the frequency f of rotation of the ribbon and 

the density of walls 𝑛 = 𝐿/𝜆 as 𝑒 =  𝑛 𝘹𝑣𝑝𝑟𝑜𝑝/𝐿𝑓 where L is the length of the ribbon 

and λ the wave length of the solitary wave. Since both the propulsion velocity and 
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rotation frequency of the ribbon are fairly independent of the modulation frequency the 

efficiency increases as the density of domain walls increases. It requires a relatively 

soft ribbon to achieve high densities of walls. 

We can understand the behavior of the ribbon by a damped relaxation equation 

𝜕2𝜙𝑏/𝜕𝑡2 + 𝛾𝜕𝜙𝑏/𝜕𝑡 = −𝛿𝐹/𝛿𝜙𝑏(𝑥) were 𝐹 = ∫ 𝑑𝑥{𝑈𝑔𝑟𝑎𝑣 (𝜙𝑏) + 𝛥𝜒𝑈𝑚𝑎𝑔𝑛(𝜙𝑏 , 𝑡) 

+(𝜕𝜙𝑏/𝜕𝑥)2/2}  is a rescaled functional of the field 𝜙𝑏(𝑥, 𝑡) with 𝑈𝑔𝑟𝑎𝑣(𝜙𝑏) =

|sin 𝜙𝑏| the gravitational potential, 𝑈𝑚𝑎𝑔𝑛(𝜙𝑏 , 𝑡) = ℎ+
2 cos(2𝜙𝑏 − 2𝛺𝑡) +

2ℎ+ ℎ− cos(2𝜙𝑏) + ℎ−
2 cos(2𝜙𝑏 + 2𝛺𝑡) the magnetic potential arising due to the 

magnetic torque density acting onto the anisotropic cross section of the two chains in a 

ribbon. ℎ+  and ℎ−  are rescaled left and right circularly polarized magnetic field 

amplitudes. The prefactor 𝛥𝜒 in front of the magnetic potential denotes the anisotropy 

(the difference between the two eigenvalues) of the effective susceptibility of the cross 

section of the ribbon and ℎ+  and  ℎ− are rescaled magnetic fields. The last term in the 

functional denotes the torsional rigidity term. Following the ideas of Kapitza [91, 114, 

115], we decompose the local orientation into a fast and a slow component 𝜙𝑏 = 𝜙𝑠 +

𝜙𝑓, expand in terms of the fast component and equate the resulting terms of the fast 

components and the time averaged slow components. This results in a time averaged 

equation of the slow component of the form 𝜕𝜙𝑠 𝜕𝑡⁄ − 𝜕2𝜙𝑠 𝜕𝑥2⁄ = −𝑑𝑈𝑒𝑓𝑓 𝜕𝜙𝑠⁄  

with an effective potential of the form𝑈𝑒𝑓𝑓 = |sin 𝜙𝑠| + ∆𝜒(2ℎ+ℎ− cos(2𝜙𝑠) −

ℎ+
2 ℎ−

2 cos(4𝜙𝑠) /4𝛺. The slow component tends to stay within the minima of the 

effective potential, while the fast component will algebraically vanish with increasing 

frequency, reducing fluctuations around the average orientation at large frequencies. 

Fluctuations render the time averaged cross section more isotropic. We hence 

expect the effective anisotropy to increase with frequency. The anisotropy of the 

susceptibility also results self-consistently from depolarization fields of neighboring 

cross sections in the ribbon. When applying an elliptical external magnetic field with 

the major axis normal to the plane, then the eccentricity of the magnetic moment will 

be enhanced for an upright orientation of the ribbon and reduced for a horizontal 

orientation. Both effects lead to a self-consistent stabilization of the upright orientation 

at high frequencies respectively to a stabilization of the lying orientation at lower 

frequencies. This behavior can be modelled by anisotropy of the susceptibility that 

increases with frequency, which shifts the global minima from 𝜙𝑏 = 0 toward 𝜙𝑏 =

𝜋 2⁄  with frequency. Whether the effective potential exhibits minima at one or at both 

locations decides whether the domain walls are 𝜋 –walls respectively 𝜋 2⁄ -walls. For 



5.2 Dynamic conformations of self-assembled helical ribbons 

87 

 

very high frequencies the effective force and the fluctuations around the minima are too 

weak to overcome the barrier between two minima separated by 𝜋 and the ribbon is 

forced into the fully upright conformation, where no propulsion is possible. 

We have, beside the propulsion of the ribbon, noticed one very interesting 

features that occurs in our system. For the system of long ribbons, twist will generate 

domain walls, where domain walls will appear with certain and stable wave length 

depending on the frequency of the external magnetic field (black squares in Fig. 5.2.6). 

Here the wave length of the twisted ribbons is defined as the distance between two 

domain walls traveling through the ribbon. As one can see from Figure 5.2.6 (black 

squares) wave length will slightly decrease with increase in the frequency of the 

external magnetic field. Exceptions of this behavior are the wave lengths for the 

ribbons at frequency of 12 and 13 Hz where the wave length is higher than the wave 

lengths for the higher frequencies. Partially this will occur for wave lengths at 28 and 

30 Hz but in this case wave length is in the boundaries of the average wave length in 

the range from 14 Hz until 28 Hz. Besides this stable propulsion we have noticed 

interesting behavior for the frequencies in the range between 14 Hz and 25 Hz (red 

circles and blue triangles in the Fig. 5.2.6) which is very pronounced for the frequency 

between 19 HZ and 25 Hz. These behaviors consist of periodical oscillations of the 

domain walls. After the stabilization period, in which domain walls can be generated 

from both side of the ribbon, each new generated wall will appear with different (lower 

or higher) wave length comparing to the previous one. This wave lengths appear in the 

regular way, i.e. each domain wall with longer wave length will be followed by the 

domain wall with shorter wave length as one can see in Figure 5.2.7.  
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FIG. 5.2.6: shows the two different regimes were the wave length between two domains walls 

depend of the frequency of the external magnetic field. Black squares represent the “normal 

regime” in which wave length between two domain walls does not change for a given 

frequency. Blue triangles (shorter wave length) and red circles (shorter wave length) represent 

the oscillating behavior of the system in which wave length will periodically oscillate around 

the wave length observed in “normal regime”. 

In the Figure 5.2.7 one can see very high regularity in appearance of the 

domain wall. Following the gray line (which is artificially placed here as a guide for the 

eye) one can see that always shorter wave length is accompanied with longer wave 

length. In the Figure 5.2.7 we show the space time plot of the orientation angle ϕb(x,t) 

for a frequency Ω=2 π 𝗑 27 Hz. Here one can also see that kinks always come in pairs.  

This system is also highly resistive to external perturbation and disturbance. 

When the system is disturbed, for any reason, in the way that the wave length (shorter 

or longer) show the deviation from a wave length for a given frequency, the system will 

experience transformation which will provide the fastest path toward the equilibrium 

behavior. 
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Fig. 5.2.7: each domain wall with longer wave length will be followed by the domain wall with 

shorter wave length. Red line and the gray connecting lines serve only as the guide for the eye. 

Red line divides the areas with the higher concentration of domain walls with the longer wave 

lengths and areas with the higher concentration of domain walls with the shorter wave lengths. 

When this kind of behavior occurs system will try, in next few cycles (few 

generated domain walls), to accommodate and return to the “normal” oscillating 

regime. This change can manifest in producing additional domain wall with very small 

wave length or by “skipping” one domain wall. The general tendency of the system is 

to find the fastest way to avoid any disturbance and to return to the normal oscillating 

regime. 
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Fig. 5.2.8: space time plot of the orientation angle 𝜙𝑏(x,t) for a frequency Ω=2 π 𝘹 27 Hz.  

In Figure 5.2.9 we plot frequency of the rotation of the domain walls versus 

frequency of the rotating magnetic field. One can see a very pronounced U-shape in the 

same range of the frequency where the oscilating domain walls appear. We do not have 

a proper theoretical explanation for this very interesting behavior of our experimental 

system. On the other hand comparing the “normal” and the “oscilation” regime we can 

propose some empirical conclusions and call for more detailed experimental and 

theoretical work. We have noticed that in the circumstances when the ribbon is shorter 

than two wave lengths of the “normal” regime (by “normal” regime we consider 

traveling domain walls represented by black squares in Fig 5.2.6) system have a high 

probability of showing “oscillatory” behavior. From the experimental point of view, it 

looks like the system is trying to generate the domain walls that will travel with the 

same wavelength, but instead start to generate domain walls which have wavelength 

smaller and larger than the wavelength in the “normal” regime. These conclusions are 

purely empirical and demand further experimental measurement and computer 

simulations.  
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Fig. 5.2.9: we have plotted a dependence of the frequency of the rotation of the domain walls 

versus frequency of the external magnetic field. One can see very good agreement in the range 

were U-shape appears and the frequencies where the “oscillating” behavior has observed.  
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5.2.3 Conclusion 

In conclusion the interplay between dipolar interactions created by external 

magnetic fields and gravity forces an ensemble of paramagnetic beads into a ribbon. 

The twist of the ribbon is a mathematical property of the finite cross section of the 

ribbon that is absent in slender bodies. It can be controlled by the frequency and the 

eccentricity of the applied precessing field. The ribbon changes from a flat lying ribbon 

via travelling twist domain walls toward a standing ribbon. In the frequency regime 

where domain walls are formed, the ribbon is propelled along its axis. The geometrical 

efficiency of propulsion scales with the domain wall density. Beside the propulsion 

efficiency we have shown that for the certain frequency and experimental conditions 

the system will experience “oscillatory” behavior. The domain walls with alternating 

wavelengths will travel through the ribbon. Few do not have a proper theoretical 

explanation for this “oscillatory” behavior, but from experimental observation, we 

strongly believe that the length of the ribbon has a crucial role which will generate 

oscillating domain walls traveling through the ribbon. For more detailed and 

theoretically sustained explanation there is a need to perform further experimental 

measurements and computer simulations.  
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5.3 Healing of the ribbons, frequency and eccentricity dependent 

colloidal structures 

In Chapter 5.1 we have studied the behavior of 1D chains of paramagnetic 

particles in an external rotating magnetic field. We show that a sudden switch from low 

to high Mason number will increase the elasticity of the chain and prevent degradation 

of the chain. In Chapter 5.2 we extended this approach to a ribbon that can perform 

propelled motion in a rotating magnetic field perpendicular to the x-y plane. In this 

chapter we will show methods that were used in the process of the ribbon healing. Also 

we will show that depending on the field frequency and eccentricity of the field, one 

can realize different structures that scale from single chain up to compact tubes and 

clusters. We apply a circular magnetic field normal to the y-z plane and vary 

eccentricity of the field in the z direction. More detail about the experimental setup can 

be found in Chapters 4.3 and 6.2.3.  

This chapter is divided in two parts. In the first part we will present methods 

of the healing of the ribbons which are later used in the experiments presented in 

Chapter 5.2. In the second part we will show how we can manipulate self-assembly of 

the paramagnetic particles by simple change in the frequency and eccentricity. In this 

second part we will show how the system can be expanded and compressed between 

two different states. The results presented in this chapter are still in preparation and will 

be submitted soon. 

5.3.1 Introduction 

Self-assembly offers an elegant way to assemble, disassemble, move and 

change particle interactions in order to obtain full control over different experimental 

arrangements. Movement of bacterial flagellae where hydrodynamic friction converts 

rotational motion of the helix into propulsion along its axis [75] has been a motivation 

to realize different systems which accomplish efficient propulsion. One of the ways in 

which to realize systems that can perform propulsion motion is linking DNA particles 

together [60] by polymer linkage [18], connecting the particles with different diameter 

by DNA [78] etc. These systems show very nice results but the main disadvantage is 

that they cannot be changed or adjusted depending on the requirements of the desired 

systems. Once assembled the systems cannot be changed. Almost all systems in nature 

demand adaptability and changeability depending on the experimental tasks. This 
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feature is especially pronounced for the processes taking place in the biological systems 

and living organisms. 

Using bottom-up concepts we are able to achieve the desired conformation of 

the system by simple change in the field frequency and eccentricity. We are able to 

realize a system which can be fully controlled externally in a predictable way. We show 

that the transient dynamics induced by switching the field frequency and eccentricity 

enable the ribbon to compress and expand between two equilibrium states. This 

behavior is governed by interaction between the viscous and magnetic torque. 

5.3.2 Assembling and healing of colloidal ribbon  

Preparation of the samples used in this experiment consists of adding the 

samples to a Petri dish, sedimentation of particles, and application of a field of 

particular strength. Specific configurations are described in Chapter 6.2.3. When 

particles were sedimented above a glass surface an external static magnetic field was 

applied in the x-axis direction. Due to the induced dipole moment, particles were 

organized into chains of paramagnetic particles parallel to the lines of the magnetic 

field (direction of x-axes). To organize chains into the ribbons and more complex 

structures we applied a dynamic magnetic field with field lines parallel to the direction 

of the y-axis. Application of the magnetic field parallel to the direction of the y-axis 

will result in attraction between different chains and single particles. As a consequence 

single chains will attract each other laterally. This lateral attraction will lead to the 

formation of two or more chains ribbons. In our experiments we are interested only in 

ribbons that consist only two connected single chains. We develop a technique which 

allows us to heal ribbons that have particles in three and four chains. After healing, we 

apply a magnetic field in the direction of z-axes, creating a rotating magnetic field in 

the y-z plane (Chapter 5.2). For the sake of clarity, a description of the healing process 

will be divided into four consecutive steps. In all of these four steps we use a time-

dependent magnetic field (𝑡) = �̂�(cos 휃𝑒𝑥𝑡𝑒𝑥 + sin 휃𝑒𝑥𝑡√2(1 − є)𝑒𝑦 cos  (𝛺𝑡) +  

sin 휃𝑒𝑥𝑡√2(1 + є)𝑒𝑧sin (𝛺𝑡)) , characterized by the four parameters of field 

strength 𝐻 ̂, the precession angle 휃𝑒𝑥𝑡, the eccentricity є and the angular frequency Ω. 

The circular modulation corresponds to (휃𝑒𝑥𝑡 = 260, є = 0) and the elliptic modulation 

to 휃𝑒𝑥𝑡= 260, є = 0.5. The formation and healing happened in four steps: 
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STEP 1: CHAIN FORMATION 

The first step is the assembly of colloidal chains in a static field along the x-

direction. We used �̂� = 2000 A/m, 휃𝑒𝑥𝑡= 0, є= 0 and Ω/2π= 0. Figure 5.3.1 show 

formation of 1D particle chains. Formation of these one dimensional chains is a well-

known and widely explored topic and more details can be found in Chapter 2. Area in 

the pictures that are marked with red ellipses point to the characteristic events. In 

Frame a) the red ellipse points to the chains and particles that will form longer chains in 

the next frame (Frame b)). The same principle is than applied for all other frames, from 

b) till f). 

Fig 5.3.1: Formation of 1D chain of particles in the direction parallel to the direction of the 

external static magnetic field (x-axes). Area in the pictures, that are marked with red ellipse, 

point to the characteristic events were shorter chains and particles will rejoin and form the 

longer chain. 

STEP 2: RIBBON FORMATION 

The second step is the assembly of a ribbon with defects from the chains. 

Ribbons can be formed using two alternative methods or combinations of them. Which 

methods are used depends of the local concentration of the particles. The local 

concentration of particles is defined as the concentration of the particles in the field of 

view of the CCD camera. Figure 5.3.1 shows the situation in which we have high 

concentration of the particles. One can see that particles are relatively close to each 

other and densely packed.  



5 Experimental results 

96 

 

If the local concentration is high enough we use �̂� = 2200A/m, 휃𝑒𝑥𝑡= 260, є = 

-1 and Ω/2π = 15 Hz. This modulation leads to an attraction of the librating chains and 

ribbons are formed. In Figure 5.3.2, frames a) and b), one can see the librating chains 

ends. Frame c) shows diffusion of shorter chains toward longer one. In the frame d) the 

chain that is marked with a red ellipse shows the characteristic event. In the next frame 

(frame e)) this chain will rejoin a longer chain and it will form a ribbon at the end of the 

chain. The same principle is applied for frame e). In frame e) the chain that is marked 

with green ellipse began to diffuse toward a longer chain and would have formed a 

ribbon in a longer experiment. In contrast to this chain, the two chains marked with 

black ellipses are too far apart from the longer chain and were not attracted toward the 

longer chain. In this case we apply the same procedure, as we use for low local 

concentration of the particles which is described below. 

 

Fig 5.3.2: Preparation of the ribbon at �̂� = 2200 A/m, 휃𝑒𝑥𝑡= 260, є = -1 and Ω/2π = 

15 Hz. Frame a) and b) show librating of the chains ends. The chains marked with red ellipse 

will rejoin with longer chain next frame (frame e)) and it will form ribbon at the end of the 

chain. The same principle is applied for the frame e). Chain marked with green ellipse can 

diffuse toward longer chain and form a ribbon. This time exceed the time of our experiment. 

Two chains marked with black ellipse are too far apart from the longer chain and they will not 

be attracted toward the longer chain. 

  This precessing field lets the chains roll in the y-direction. The speed of 

rolling is higher for shorter chains than for longer chains such that shorter chains catch 
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up with the longer chains. First using a precessing field (є = 0) two chains roll at 

different speeds and come into the range of attraction after which we switch to є = -1 

and the librating chains attract and form a ribbon. After step 2 we obtain ribbons 

consisting of several chains with lots of defects. 

STEP 3: RIBBON FRAGMENTATION AND SEGMENT HEALING 

In the Figure 2.2.2.3, frame a), the area marked with red ellipse shows one of 

the ribbons that needs to be healed in order to obtain a ribbon that consists only of two 

chains. To fragment the ribbon we use a field with �̂�= 2370 A/m, 휃𝑒𝑥𝑡= 32.50, є = 0.38 

and Ω/2π = 15Hz. Fragmentation of the ribbon is shown in Figure 5.3.3 in the frames 

b)-f). The ribbon fragments into separate segments along the x-direction that 

periodically realign. During this process individual segments heal into short, mainly 

two chained ribbons. 
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Fig 5.3.3: Frames from b) until f) show the fragmentation of different defect ribbons into 

segments of two chained ribbon segments. Frames g) and h) show ribbons with the smaller 

defects than the ribbon in frame a). A completely healed ribbon is shown in frame i). 

STEP 4: SEGMENT COALESCENCE 

To coalesce two chained segments into a long two chained ribbon we use a 

field with �̂� = 2200 A/m, 휃𝑒𝑥𝑡= 260, є= 0 and Ω/2π = 15 Hz. In this field the two chain 

segments rebind to form a longer ribbon. On most occasions the coalescence of two 

chain segments does not create defects. In Figure 5.3.3, frames g) and h) show ribbons 

with smaller defects than the ribbon in frame a).To heal these defects we repeat steps 3 

and 4. A completely healed ribbon is shown in frame i).  
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The healing process is recommendable for magnetic field frequencies between 

11 Hz < Ω/2π < 18 Hz, where fragmentation is possible. Above 18 Hz clusters form 

instead of ribbons. For frequencies between 18Hz < Ω/2π < 30 Hz formation and 

healing of the ribbons is also possible. Contrary to the process that takes place in the 

frequency range below 18 Hz, healing of ribbons above 18Hz can experience many 

difficulties which we will explain in more detail in Chapter 5.3.3. 

5.3.3 Compression and expansion with self-assembled 

paramagnetic particles structures 

To assemble the chains and ribbons we repeat the procedure presented in steps 

1 and 2 described in Chapter 5.3.2. In all of the steps performed and described in this 

chapter we use the same time dependent magnetic field given as:  𝐇(𝑡) =

�̂�(cos 휃𝑒𝑥𝑡𝑒𝑥 + sin 휃𝑒𝑥𝑡√2(1 − є)𝑒𝑦 cos  (𝛺𝑡) + sin 휃𝑒𝑥𝑡√2(1 + є)𝑒𝑧sin (𝛺𝑡)). The 

applied field is characterized by the four parameters of field strength 𝐻 ̂, the precession 

angle 휃𝑒𝑥𝑡, the eccentricity є and the angular frequency Ω. The circular modulation 

corresponds to (휃𝑒𝑥𝑡 = 260, є = 0) and the elliptic modulation to 휃𝑒𝑥𝑡= 260, є = 0.5. 

For frequencies below Ω/2π = 18 Hz (Fig 5.3.4 shows the ribbon assembled at 

the frequency Ω/2π = 15 Hz), which is the frequency used for the healing of the 

ribbons, we were able, by changing the eccentricity of the magnetic field in direction of 

z-axis (0.3<є<0.5), to achieve a transition from a ribbon that consists of particles in the 

third and fourth row (Fig 5.3.4 a)) to a single chain (Fig 5.3.4 j)) by simply changing 

the eccentricity of the magnetic field. In Fig 5.3.4 frame a) shows the unhealed ribbon 

with particles in the third and fourth row. Here we have a similar situation as we had in 

Chapter 5.3.2 where we showed how to heal the ribbon. 

Frames from b) until d) show the behavior of the chain for a value of the 

eccentricity of є = 0.3 slightly above 0.3. For these experimental conditions one can see 

that almost all the chains from the third and fourth row are healed. Frames from e) until 

h) show the behavior of the chain for the value of the eccentricity of є = 0.5. Here 

ribbon will break in to a smaller ribbons, but this smaller ribbons will not diffuse far 

from chain and by reducing є from є = 0. 5 to є = 0.3 smaller ribbons will again rejoin 

to a long ribbon. Breaking of the long ribbon and rotation of this smaller part will allow 

the particles to reorganize their positions in the ribbon. In this way particles will prefer 

to align with the field in the direction of x-axis rather that with the field in the direction 

of y-axis. 
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Fig. 5.3.4: Shows the ribbon assembled at the frequency Ω/2π = 15 Hz. Frame a) show the 

unhealed ribbon with particles in the third and fourth row. Frames from b) until d) show the 

behavior of the chain for the value of the eccentricity of є = 0.3 slightly above 0.3. Frames 

from e) until h) show the behavior of the chain for the value of the eccentricity of є = 0.5. Here 

ribbon will break in to a smaller ribbons, but this smaller ribbons will not diffuse far from 

chain and by reducing є from є = 0. 3 to є = 0.5 smaller ribbons will again rejoin to a long 

ribbon. Frame i) shows the single chain with only one particle in the second row. Frame j) 

shows the single chain completely cleaned from any defects. 

This behavior will result in migration of the particles and dissolution of the 

ribbon into single chains of particles. After some time all particles will be only in the 

form of single chains which are parallel with the direction of the x-axis. In the case 

when eccentricity is higher than є = 0.5 ribbons can be destroyed completely where the 

particle can move from the position of the ribbon permanently. In this situation any 

reductions in eccentricity lower than є = 0.3 cannot return these particles to the initial 

long ribbon. In this case particles will continue to move as independent objects. Frame 
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i) shows the single chain with only one particle in the second row. Frame j) shows the 

single chain completely cleaned from any defects. 

Contrary to the behavior of the system for the frequency Ω/2π =18 Hz where 

unhealed ribbons will dissolve into two chain ribbons and further to single chains, for 

the frequency above Ω/2π = 18 Hz (up to Ω/2π =30 Hz which was the limit of our 

measurement) unhealed ribbons will cluster. This behavior can be seen on the two 

consecutive figures (Fig 5.3.5 and Fig 5.3.6) which present the transition of the ribbon 

assembled at the frequency Ω/2π = 28 Hz. Frame a) shows the unhealed ribbon with 

only one particle in the third row. Frames b) to e) show the behavior of the chain for 

values of the eccentricity from є = 0.3 to є = 0.5. Ribbons will perform rotational 

motion and particles will reorganize into the direction of the y-axis. During this motion 

particles form the chains in the third and the fourth chain. Further rearrangement of the 

particles always happened in the direction of the populating and healing the impurities 

in the third, fourth and consecutive rows. For example if there is an empty space 

between the particles in the third row (in order that 2-4 particles are missing to 

complete the third row), particles will first try to reorganize and heal this impurity 

before starting to form a new row. By increasing the eccentricity of the system to the 

value of є = 0.5 we can more quickly rearrange the particles in the ribbon. Frames from 

f) until j) show the further clustering of the particles for the eccentricity є = 0.5 until 

they reach a stable conformation. In this system this stable conformation is a cylinder 

or tube which consists of 4-5 single chains. This cylinder will perform very stable 

propulsion motion for eccentricities between є = 0.2 and є = 0.5 without any new 

reorganization in the existing cylinder. Reorganization can occur only in the parts of 

the ribbon outside the cylinder. The next figure (Fig 5.3.5) is a continuation of the same 

movie. Frame k) shows the cylinder that performed rotation motion in the Fig. 5.3.5 g) 

until Fig. 5.3.5 j) when є = 0.5. If we increase the eccentricity of the field from є = 0.65 

to є = 0.75 we are able to break the cylinder. Now the particles will detach from the 

cylinder and try to reorganize in the direction parallel to the x-axis. This behavior can 

be seen in frames l) to n). Frames o) to r) show consecutive steps of the cylinder 

reorganization. For these frames we reduced є from є = 0. 65 to є = 0.55.  
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Fig. 5.3.5: Shows the ribbon assembled at the frequency Ω/2π = 28 Hz. Frame a) show the 

unhealed ribbon with only one particle in the third row. Frames from b) until e) show the 

behavior of the chain for the value of the eccentricity from є = 0.3 until є = 0.5. Frames from f) 

until j) show the further clustering of the particles until they reach stable conformation and the 

value of the eccentricity was є ≈ 0.5. In this system this stable conformation is a cylinder or 

tube which consists out of 4-5 single chains. This cylinder will perform very stable propulsion 

motion without any new reorganization in the existing cylinder. The next figure (Fig 5.3.5) is a 

continuation of the same movie.  

Each step between these frames was realized with eccentricity from є = 0.65 to 

є = 0.75. Frame r) shows the almost healed ribbon which performs propelling motion. 

Frame s) shows the almost healed ribbon with only two particles in the third row. 
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Fig. 5.3.6: Shows the ribbon assembled at the frequency Ω/2π = 28Hz. Frame k) show the 

cylinder that performed rotation motion in the Fig. 5.3.5 g) until Fig. 5.3.5 j) when є = 0.5. 

Frames from l) until n) show the behavior of the chain for the value of the eccentricity of є = 

0.75 were cylinder start to break and particles start to reorganize. Frames from o) until r) 

show consecutive steps of the cylinder reorganization. For this frames we reduce є from є = 0. 

65 to є = 0.55. Each step between this frames was realize with eccentricity = 0.75. Frame r) 

shows the almost healed ribbon which performs propelling motion. Frame s) shows the almost 

healed ribbon with only two particles in the third row.  

As mentioned previously, ribbons can also be healed at frequencies above 

Ω/2π =18 Hz as shown in Fig 5.3.5 and Fig 5.3.6. Nevertheless, the healing procedure 

for this range of frequency has several difficulties. The system is very unstable for all 

eccentricity bellow є = 0.2 and especially when eccentricity is reduced to є = 0. In this 

range the system starts to cluster very quickly and switching to є = 0 can result in 

destruction of already healed ribbons and defects in the third and fourth row. Compared 

to the healing process performed for frequency below Ω/2π =18 Hz this system is much 
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harder to control and direct. Also this system can more easily cause the destruction of 

the whole structure of the system below Ω/2π =18 Hz. This behavior can be explained 

in the following way. Forming the chains in third, fourth and higher rows particles are 

further from the line that goes through the center of the structure. By applying high 

eccentricity of the field in the direction of the z-axis particles can be easily pushed out 

of the imaginary phase space and reducing the eccentricity will not bring them back 

into the ribbon structure. Instead of rejoining with the primary structure these particles 

will reorganize and form a completely new structure. For this reason, we recommend 

that healing procedures are performed at frequencies lower than Ω/2π =18 Hz. 

5.3.4 Conclusion 

In conclusion we have shown that our colloidal system can perform different 

types of behavior depending on the frequency and eccentricity of the external magnetic 

field. We have shown how we can successfully heal the system and remove all defects 

from the system. By changing the eccentricity of the field we were able to reorganize 

the unhealed ribbons into the healed ones. By further changing the eccentricity we were 

able to transform the system from the ribbon into the single chain and into the cluster 

by simple change in the field frequency and eccentricity. By changing these parameters 

we could expand and compress the ribbon. By expansion and compression we can draw 

the system from single chain to the cylinder which can perform very stable rotational 

motion. This process is reversible and can be completely controlled externally, which 

makes this system a very good candidate for further research in the field of dynamic 

self-assembly. 
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6 Materials and Methods 
In Chapter 6, we will give an overview of all materials and methods that has 

been used in all experiments performed during the work on this thesis which are 

described in Chapter 5. Here we will extend the short overview of experimental setup 

presented in the Chapter 4. In particular we will present a short description of all 

instruments that have been used such as polarization microscope, wave generator, etc., 

scheme of the experimental setup with parameters that have been used to achieve 

experimental results. Some of the steps involved in the preparation are common to 

more than one experiment and these steps will be outlined specially. We have also 

outlined some of the imaging techniques used to extract results.  

6.1 Materials 

6.1.1 Paramagnetic colloidal particles and ferrofluid droplets 

Paramagnetic colloidal particles, also called superparamagnetic particles, used 

in this work were 2.8 µm negatively charged polymer “dynabeads”. All paramagnetic 

particles used in the experiments performed during the work presented in this thesis 

were purchased from Dynal Invitrogen (Invitrogen Dynal Oslo, Norway) (The name of 

the company lends the common name of dynabeads for these particles). These particles 

are highly monodisperse with mean diameter of 2.8 µm and concentration of 2.8 ∙ 109 

beads/ml. The core of the particle contain a small grain of magnetite (5-10 nm in size) 

coated with polymer shell. The surface of the particles is functionalized with 

carboxylate groups, which dissociate in water and cause a negative surface charge on 

the particles. This dissociation will cause repelling force between particles which 

prevent the aggregation of the beads.  

Due to randomness of orientation of small iron grain inside of particles, in the 

absence of external magnetic field resulting magnetic moment will be equal to zero. 

When external magnetic field is applied particles will acquire an induced magnetic 

moment and they will behave as superparamagnetic particles. This means that particles 

will show no hysteresis or magnetic remanence i.e. for low field strengths, their 

magnetization is completely reversible and is proportional to the external field through 
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χeff. χeff is the effective magnetic susceptibility. In our experiments all field strengths 

are low enough to be in linear regime of the magnetization curve [25, 33].  

To prevent aggregation and to provide additional monodispersity of particles, 

SDS (Sodium dodecyl sulfate) was added to the original solution. Because of the small 

iron core these particles will gain an induced dipole moment when they are subjected to 

an external magnetic field and they will behave like a paramagnet. Consequently, 

individual particles in an external magnetic field interact via magnetic dipole-dipole 

interactions. 

To be able to create polydisperse liquid droplets (see Chapter 5.1for detailed 

experimental use) we used oil based ferrofluid APG-820 from Ferrotec. Ferrofluids are 

a unique class of material. Ferrofluids are stable colloidal suspension of sub-domain 

magnetic nano particles (an average size of about 10 nm) in a liquid carrier, coated with 

a stabilizing dispersing agent (surfactant) which prevents particle agglomeration even 

when a strong magnetic field gradient is applied to the ferrofluid. 

6.1.2 Magnetic Field 

To create the magnetic field necessary for investigating a wide range of 

magnetic properties we use a system consisting of three independent custom made 

coils. These coils are made of 0,5 mm Cu-wire with 950 winding and have a soft iron 

core or simply an air core depending on the experimental requirements. A system of 

coils was mounted on an aluminium plate and arranged normal to each other (see 

Figure 6.1 for details). Two of the coils (x and y coil) create the field horizontal to the 

x-y plane while the third coil creates a magnetic field perpendicular to the x-y plane. 

We use static and rotating magnetic field varying directions of fields depending on the 

experimental requirement. A static magnetic field was realized using DC generator (ET 

Systems electronic GmbH) LAB/SL 230 AI/LT, 0-30 VDC. A rotating magnetic field 

was realized with the help of a wave generator (TTi TGA 1244) with a phase difference 

of π/2 between outputs. Voltage and current were controlled and measured using an 

oscilloscope (Tektronix TDS 2014B). A circularly polarized magnetic field rotating in 

the x-y plane or the y-z plane (depending of performed experiment) was accomplished 

by supplying the two amplifiers with the same voltage but with phase difference of π/2 

between them. Varying the input voltage magnetic field can be made elliptically 

polarized. The impedance of coils was matched with the impedance of the amplifier 

(OMNITRONIC Є-200). 



6.1 Materials 

107 

 

 

Fig 6.1: a) Picture of the arrangement of the three perpendicularly orientated solenoid coils 

with the soft iron core and  

6.1.3 Optical Microscopy and video analysis 

We used a Leica DM 2500P polarization microscope with polarizer and 

analyzer (see Figure 6.2 for more details). All videos were recorded with Basler camera 

(Basler A311fc) on PC. Because real time image analyzing using a PC is not possible 

in most cases (due to high frame rate of recorded videos). Therefore all videos recorded 

during experiment are stored in real time on the hard disc of the computer. Videos are 

analyzed at the end of experiments using frame by frame method with help of software 

program MatLab. We wrote our custom made algorithm in MatLab to extract all 

necessary data from the recorded videos. Before processing the data with MatLab, the 

videos are filtered and treated with other programs for image manipulation such as 

ImageJ [116], Ulead Video Editor 8 etc. By setting a threshold value we were able to 

set particles as black points against a white background. A MatLab program is then 

used to label all connected black areas and determine the center of mass and size.  
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Fig 6.2:  Schematic representation of the experimental set  

 



6.1 Materials 

109 

 

 

 

Fig 6.3: Picture of experimental set up 
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6.2 Methods 

6.2.1 Friction-controlled bending solitons as folding pathway 

toward colloidal clusters 

In this chapter we will explain basic experimental procedures used for 

realizing the experiment presented in Chapter 5.1. 

Sample preparation: our experiment employs two types of water-dispersed 

magnetic particles confined by gravity on a solid substrate: paramagnetic colloidal 

particles (Dynabeads M-270, radius a=1.4 μm) (which collapse to the cluster via 

curling motion) and SDS stabilized ferrofluid droplets (APG-820 Ferrofluid) (which 

collapse to the cluster via buckling motion). The paramagnetic colloids were diluted in 

Millipore water (5*10-6 beads/ml) while the ferrofluid emulsion was prepared by 

dispersing 6% by w. of APG into a water solution containing 1.6% by w. of SDS. 

Using a pipette, a solution of paramagnetic particles (~100 μl) was placed in Petri dish 

previously filled with Millipore water. Particles were, due to gravity, sediment on the 

bottom of the Petri dish. The glass surface was pretreated with SPP (coating glass 

surface with PSS was described in details in section 6.2.5). Sedimentation velocity can 

be calculated from following formula [32]: 

𝑈𝑠 =
𝑀𝑔𝐷0

𝑘𝐵𝑇(1 −
𝜌

𝜌𝑝 
⁄ )

 , (6.1) 

where M is the mass of the particles, D0 is the particle’s diffusion coefficient in water, 

ρ is water density and ρp is the density of particles. For the complete sedimentation and 

equilibrium of particles average waiting time was approximately 15-20 min. In the 

absence of a magnetic field the lateral arrangement of the particles is a random 

distribution.  

 External magnetic field and optical microscopy: After sedimentation of 

particles we apply an external magnetic field in direction of x-axis. Particles acquire 

induced dipole moment and form chains in the direction parallel to the magnetic field. 

Formation of the chains is out of crucial importance for our experiment. Necessarily 

time for the formation of the chains can be express following formula [38]: 
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𝑇0~
휂

𝜇0𝑀𝑉
2 ϕ−5 3⁄  ,   (6.2) 

where M is the particle volume magnetization, ϕ is the volume fraction, µ0 is 

permeability of vacuum and η is the zero-frequency viscosity. Applying dynamic 

magnetic field (𝑯(𝑡) = 𝐻𝒆𝒙) in the direction of the x-axis particles will organize in the 

chains parallel to the lines of the magnetic field. If two chains are close and parallel to 

each other, they will diffuse toward the closest end of the other chain. 

Experimental procedure and video recording: when chains reach a certain 

length (≥25 particles) we apply the dynamic magnetic field in the direction of the y-

axis with phase difference of 900, creating the rotating magnetic field in x-y 

plane (𝑯(𝑡) = 𝐻(cos 𝜔𝑡𝒆𝒙 + cos 𝜔𝑡𝒆𝒚)). Frequency varied in the range from ν=3 Hz 

to ν=60 Hz (see figure Fig 5.1.1). For each frequency we varied the magnetic field from 

H~200 A/m to H~1200 A/m (see figure Fig 5.1.1). The same procedure was applied in 

the experiment with SDS stabilized ferrofluid droplets (APG-820 Ferrofluid). All 

experiments were visualized with the polarization microscope Leica DM 2500P using a 

100x oil immersion objective and 0,55x C-mount. Videos were recorded with the help 

of a digital color camera Basler A311fc at 30 frames per second. More details 

concerning this experimental results one can find in Chapter 5.1. 

6.2.2 Dynamic conformations of self-assembled helical  ribbons 

In this Chapter we will explain basic experimental procedures used for 

realizing the experiment presented in Chapter 5.2. 

Sample preparation: We repeat the same procedure of adding the sample to a 

Petri dish and sedimentation of particles as we described in Chapter 6.2.1.  

External magnetic field and optical microscopy: when particles were sediment 

above the glass surface an external static magnetic field in direction of x-axis was 

applied. When chains reach a certain length (≥40 particles) we apply the dynamic 

magnetic field in the direction of the y-axis with phase difference of 900, creating the 

dynamic magnetic field that will induce an attractive force between the chains in the 

direction of y-axis. Thus we are able to create structures that consist of two chains in 

direct connection (ribbon). In our experiments we are interested only in ribbons that 
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consist only two connected single chains. We develop techniques which allow us to 

heal the ribbons that have particles in the third and fourth chain. These healing 

techniques were explained in more details in Chapter 5.3. 

Experimental procedure and video recording: after a ribbon was formed we 

apply the dynamic magnetic field in the direction of the z-axis with phase difference of 

900, creating the rotating magnetic field in y-z plane. Ratio between the static and 

rotating magnetic field is kept in relation 2:1 i.e. the static field is always double the 

strength of the precessing magnetic field in on order to prevent distraction of the ribbon 

structure. This ratio was used for all values of the frequency and magnetic field strength 

used in this experiment. Field modulation was changed from circular magnetic field 

toward the slightly elliptical magnetic field in the direction of z-axis with increasing 

frequency value (frequency was varied from ν=11 Hz to ν=40 Hz). All experiments 

were visualized with the polarization microscope Leica DM 2500P using a 50x oil 

immersion objective and 0,75x C-mount. Videos were recorded with the help of a 

digital color camera Basler A311fc at 30 frames per second. More details concerning 

this experimental results can be found in Chapter 5.2. 

6.2.3 Healing of the ribbons, frequency and eccentricity 

dependent colloidal structures  

In this chapter we will explain basic experimental procedures used for 

realizing the experiment presented in Chapter 5.3. 

Sample preparation: We repeat the same procedure of adding the sample to 

Petri dish and sedimentation of particles as we described in Chapter 6.2.1.  

External magnetic field and optical microscopy: when particles were sediment 

above the glass surface we follow two different ways to build up structures that consists 

of two, three or more chains in direct connection. The first way is to apply an external 

static magnetic field in the direction of x-axis and first form single (one dimensional) 

chains and then apply the dynamic magnetic field in the direction of the y-axis and 

form ribbons or structures that consist more than two chains. The second way is to 

apply a static magnetic field in the direction of the x-axis and the dynamic magnetic 

field in the direction of the y-axis at the same time. In our work we used the first way 

because it provide a more controlled way to build up structures that have desired length 

and shape. 
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Experimental procedure and video recording: after we formed structures that 

have more than two direct connected chains we apply the dynamic magnetic field in the 

direction of the z-axis with a phase difference of 900, creating the precessing magnetic 

field in the y-z plane. The static magnetic field is always kept stronger than the field in 

the direction of y- and z-axis. This relation was used for all values of the frequency and 

magnetic field strength used in this experiment. Field modulation was changed from 

circular magnetic field toward the elliptical magnetic field (є = 0.3) in the direction of 

the z-axis. When the ribbon was healed (consists only two single chains connected 

together) we change the eccentricity of the elliptical magnetic field in the direction of 

the z-axis to the elliptical magnetic field in the direction of y-axis (є = 0.05-0.1) in 

order to preserve the ribbon structure. For the frequency up to ν=18 Hz a ribbon can be 

successfully healed. For the frequency up to ν=18 Hz a ribbon can be further dissolved 

to the single chain applying elliptical magnetic field (є = 0.2-0.5) in the direction of z-

axis after the structure is healed to the ribbon. For the frequency between ν=18 Hz and 

ν=28 Hz unhealed structures can be collapse in to the cluster and later stretch to a 

single chain that can manipulate the eccentricity of the magnetic field in the direction 

of the z- and y-axis. All experiments were visualized with the polarization microscope 

Leica DM 2500P using a 50x oil immersion objective and 0,75x C-mount. Videos were 

recorded with the help of a digital color camera Basler A311fc at 30 frames per second. 

More details concerning these experimental results can be found in Chapter 5.3. 

6.2.4. Preparing the PSS solution 

To prepare the solution of poly sodium 4-styrenesulfonate or short PSS for 

coating the Petri dish with a thin layer of negative charges we used the following 

procedure: 

1. 100 mg of PSS was dissolved in 20 ml of ultrapure water placed in a tube. 

2. 0.58 g of NaCl (0.5 M) was added to the solution. 

3. The bottle was sealed and stored to the fridge. 

6.2.5. Coating with PSS solution 

With pipette solution of PSS was added to Petri dish in amount that 

completely covers the bottom of the Petri dish. For successful coating process we 

applied the following steps: 
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1. The Petri dish was placed horizontally in a sonicator (put name) and sonicated 

for 15- 20 minutes. 

2. The remaining solution of PSS was removed using micropipette.  

3. The Petri dish was dried with compressed air and ready for experimental use.  
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7 Summary 
 We have studied the dynamic self-assembly of paramagnetic micrometer 

size particles at the solid-liquid interface. Applying conditions where the Mason 

number is very high we were able to realize the motion of paramagnetic chains and 

ribbons which have not been previously presented. We have shown that in our colloidal 

system the kinetics of folding is dominated by friction arising along the slopes of the 

energy landscape rather than by transitional rates over flat saddle points. The shortest 

pathway from a pearl chain toward a cluster via the buckling of the chain is suppressed 

by the friction of relative motion between the adjacent surfaces of the particles and not 

by the presence of barriers in the energy landscape. The system therefore avoids the 

pathway of the steepest descent and chooses an alternative longer pathway via the 

bending soliton that minimizes the friction. We confirm these findings in two 

experiments with different systems. In the system of solid spheres systems follows the 

lower friction pathway (not the shortest pathway). A system of ferrofluid droplets will 

choose the pathway of steepest decent. These findings were supported with agreeable 

numerical simulations which were able to confirm experimental results. 

 We have also realized a system that can perform propelling motion 

above a solid-liquid interface. We have shown that the interplay between dipolar 

interactions created by external magnetic fields and gravity forces an ensemble of 

paramagnetic beads into a ribbon. The twist of the ribbon is a mathematical property of 

the finite cross section of the ribbon that is absent in slender bodies. It can be controlled 

by the frequency and the eccentricity of the applied precessing field. The ribbon 

changes from a flat lying ribbon via travelling twist domain walls toward a standing 

ribbon. In the frequency regime where domain walls are formed, the ribbon is propelled 

along its axis. The geometrical efficiency of propulsion scales with the domain wall 

density. Beside the propulsion efficiency we have shown that for a certain frequency 

and experimental conditions the system will experience “oscillating” behavior. The 

domain walls with alternating wave lengths will travel through the ribbon. For this 

“oscillating” behavior we do not have a proper theoretical explanation, but from 

experimental observations, we believe that the length of the ribbon has a crucial role 

which will generate oscillating domain walls traveling through the ribbon. For more 

detailed and theoretically sustained explanations there is a need to perform further 

experimental measurements and computer simulations.  
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Beside propulsion motion we have shown that our colloidal system can 

perform different types of behavior depending on the frequency and eccentricity of the 

external magnetic field. We have shown how we can successfully heal the system and 

remove all defects from the system. By changing the eccentricity of the field we were 

able to reorganize the unhealed ribbons into the healed ones. By further change in the 

eccentricity we were able to transform the system from a ribbon into a single chain and 

into a cluster by simply changing the field frequency and eccentricity. By changing 

these parameters we could expand and compress the ribbon. By expansion and 

compression we can draw the system from single chain to the cylinder which can 

perform very stable rotational motion. This process is reversible and can be completely 

controlled externally, which makes this system a very good candidate for further 

research in the field of dynamic self-assembly. 
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Zusammenfassung 

In dieser Arbeit haben wir die dynamische Selbstassemblierung Mikrometer 

großer paramagnetischer Partikel an einer flüssig festen Grenzfläche studiert. Durch 

abruptes anlegen von Magnetfeldern bei hohen Masonzahlen konnten wir bisher nicht 

beobachtete Bewegungen von magnetischen Ketten und Bändern erzeugen. Wir haben 

gezeigt, dass in unserem kolloidalen System, die Kinetik des Faltungsprozesses durch 

hydrodynamische Reibung entlang der Abhänge der Energielandschaft, und nicht durch 

Übergangsraten über Sattelpunkte bestimmt ist. Der kürzeste über ein Verkrumpeln der 

Kette führende Faltungspfad von einer Kette zu einem Cluster wird nicht durch 

Energiebarrieren sondern durch die beim aneinander vorbei Gleiten der 

Partikeloberflächen auftretende Reibung unterdrückt. Das System vermeidet also den 

Pfad des steilsten Abstieges und wählt einen längeren dafür weniger dissipativen 

Faltungspfad, welcher die Reibung minimiert. Experimente an zwei unterschiedlichen 

Systemen bestätigen diese Ergebnisse: Das System aus harten Kugeln folgt dem 

längeren Pfad minimaler Reibung. Ein System aus flüssigen Ferrofluidtropfen wählt 

den kürzesten Pfad des steilsten Abstieges. Unsere numerischen Studien zu beiden 

Systemen sind in Übereinstimmungen mit diesen experimentellen Ergebnissen.  

Wir haben darüberhinaus ein System realisiert welches sich über einer flüssig 

festen Grenzfläche schwimmend fortbewegt. Wir haben gezeigt, dass das 

Zusammenspiel durch externe Magnetfelder induzierter dipolarer Wechselwirkungen 

mit der Gravitation, eine Ansammlung paramagnetischer Partikel in die Form eines 

Bandes zwingt. Die Verdrillung des Bandes ist eine mathematische Eigenschaft des 

endlich großen Bandquerschnittes, die in einem schlanken Körper nicht vorkommt. Sie 

kann durch die Frequenz und die Exzentrizität des angelegten externen Magnetfeldes 

kontrolliert werden. Das Band verändert sich als Funktion beider Parameter von einem 

flachen liegenden Band über wandernde Verdrillungswände hin zu einem flachen 

stehenden Band. Im Frequenzbereich der wandernden Verdrillungswände schwimmt 

das Band entlang seiner Längsachse. Die geometrische Effizienz der 

Schwimmbewegung skaliert mit der Verdrillungswanddichte. Des Weiteren tritt bei 

bestimmten Frequenzen ein Zweierzyklus abwechselnd kurz- und langwelliger 

wandernder Verdrillungswände aus, der bisher theoretisch nicht erklärt werden kann, 

aber vielleicht mit der Kommensurabilität der Wellenzüge mit der Bandlänge zu tun 

hat. Hier können weitere Experimente und Computersimulationen vielleicht eine 

Antwort liefern.  
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Nicht nur die Schwimmeffizienz sondern das gesamte dynamische Verhalten 

des Bandes kann durch die Frequenz und die Exzentrizität des externen Magnetfeldes 

verändert werden. Wir haben gezeigt dass ein Band durch zeitliche Variation der 

Exzentrizität von Banddefekten geheilt werden kann, bzw. durch Variation der 

Frequenz und Exzentrizität auch in eine Einzelkette oder einen Cluster verwandelt 

werden kann. Die Formveränderungen erfolgen über eine Expansion bzw. Kompression 

des Bandes. Auch kann ein Band zu einem in sich geschlossenen Zylinder 

zusammengerollt werden, der dann eine stabile Rotationsbewegung ausführt. Alle 

Prozesse sind reversibel und können vollständig durch das externe Feld kontrolliert 

werden. Die macht unser System zu einem guten Kandidaten für weitere 

Untersuchungen zur dynamischen Selbstassemblierung. 
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