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Abstract

Many physical systems are subjected to a large amount of perturbations and noise.
Mathematical solutions might not be cast into a practical idea. Therefore, systems
that are robust against perturbations gain high interest in current research. These
systems extend from mesoscopic particle systems to microscopic quantum systems.
A promising approach to robust response is the idea of topological protection. A
quantity protected by some underlying topology cannot be disturbed by perturbations,
that do not destroy the topology. Understanding such systems on several space and
time scales is a fascinating field in physics. Research on topological physics gives
possibilities to improve e.g. quantum computers or lab on a chip devices.
In this thesis the topological protected transport of free and that of locked induced
octupoles is studied. The octupoles are placed on a magnetic pattern and driven by
an external magnetic field. In this magnetic potential, build by the external and the
pattern field, free octupoles, that were free to rotate, seek saddle point equivalent
points. The topological protection in such a setup was studied in previous works with
paramagnetic and diamagnetic particles seeking either maxima or minima of such a
potential. Now, the non-trivial behaviour of points, equivalent to saddle-points can
be studied.
Simple external field loops, consisting of merely precessing fields and polar orbiting
fields, were used in the simulations to understand the movement of the free octupoles.
Some sharp transitions of path types were found. These transitions were studied
in detail and there was a better understanding in terms of exploring the parameter
space close to the transition. The transition from trivial, contractable path loops
towards non-trivial path loops with a winding number of two can be understood
better by breaking the C6 symmetry and studying the octupoles on a C3 symmetric
pattern.
Placing several free octupoles per unit cell gives the possibility to exchange two
octupoles in a non-trivial way by winding them around each other. This braiding is
of great interest for a topological quantum computer, where braiding is used to get
topologically protected states.
Apart from free octupoles we further studied locked octupoles, where the orientation
was locked at a fixed angle to the external field. Locked octupoles show a different
behaviour, that can be explained based on the results of the free octupoles. In polar
orbiting field loops, a sorting of locked octupoles with respect to their locking angle
was observed. The locked octupoles were studied not only in simulations, but also in
experiment. First results show promising features indicating the behaviour of locked
octupoles.
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Zusammenfassung

In vielen physikalischen Systemen spielt Rauschen eine große Rolle, besonders, wenn
es darum geht, mathematische Modelle auf die physikalische Welt zu übertragen. In
der aktuellen Forschung ist die Suche nach robusten Systemen aus diesem Grund
von großer Bedeutung. Ein vielversprechender Ansatz ist der topologiche Schutz.
Systeme, deren Eigenschaften topologisch geschützt sind, können nur durch äußere
Einflüsse, die die Topologie zerstören, beeinflusst werden. Quantencomputer und
Lab-on-a-chip-Anwendungen können somit deutlich verbessert werden.
In dieser Arbeit wird der topologisch geschützte Transport freier und versklavter,
induzierter Oktupole untersucht. Die Oktupole werden auf ein magnetisches Muster
gesetzt und von einem externen Magnetfeld angetrieben. In dem magnetischen
Potential suchen die freien Oktupole, welche sich frei drehen können, Punkte, die
topologisch äquivalent zu Sattelpunkte sind, auf. In vorangehenden Arbeiten wurde
in solch einem System der topologisch geschützte Transport von Diamagneten und
Paramagneten untersucht. Jene Teilchen suchen Minima und Maxima auf. Mit
Oktupolen kann nun auf das nichttriviale Verhalten von Sattelpunkten eingegangen
werden.
Das externe Feld wird dabei auf Bahnen bewegt, die sich aus präzessierenden Anteilen
und polaren Orbits zusammensetzen. In den Simulationen mit freien Oktupolen
wurden einige topologische Übergänge gefunden. Diese konnten besser verstanden
werden, indem der Parameterbereich um die Übergänge untersucht wurde. So kann
der Übergang von einem einfachen, zusammenziehbaren Pfad zu einem nicht-trivialen
Pfad mit Windungszahl zwei erklärt werden, indem die Pfade auf Mustern, die
lediglich eine C3-, statt einer C6-Symmetrie aufweisen, untersucht werden.
Mit mehreren freien Oktupolen pro Einheitszelle ist es möglich, diese umeinander
zu winden und somit zu flechten. Dieses Themengebiet ist besonders im Bereich
topologischer Quantencomputer relevant. Durch die Verflechtung von Quasiteilchen
können topologisch geschützte Zustände für Quantencomputer erzeugt werden.
Neben freien Oktupolen wurden auch versklavte Oktupole untersucht, deren Orien-
tierung mit einem beliebigem aber festem Differenzwinkel bezüglich des externen
Feldes vorgegeben ist. Das abweichende Verhalten der verskavten gegenüber der
freien Oktupole kann mit den Erkenntnissen über freie Oktupole erklärt werden.
Versklavte Oktupole können mittels polarer Orbits des externen Feldes nach den
jeweiligen Differenzwinkeln sortiert werden. Die versklavten Oktupole wurden sowohl
durch Simulationen als auch in Experimenten erforscht. Erste Ergebnisse sind vielver-
sprechend dahingehen, dass es sich bei den experimentell verwendeten Teilchen um
versklavte Oktupole handelt.
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1 Introduction

As far as the laws of mathematics refer to reality, they

are not certain; and as far as they are certain, they do

not refer to reality.

(Albert Einstein)

Many physical systems are difficult to understand, difficult to describe in a theoretical,
mathematical way. For some of them good explanations exist, but nature does not
know about this human-made theory and the results can only be taken qualitatively.
One prominent case is the critical velocity of helium 4 (Zhu & Wu, 2015). Helium
4 is a superfluid and can therefore flow without friction up to a certain velocity,
the critical velocity. Above the critical velocity, excitations are possible inside the
fluid, leading to a dissipation of energy, so the fluid is no longer a superfluid. The
phenomenon of the existence of the critical velocity is nicely described in theory, but
the experimental values of the critical velocity are orders of magnitude smaller. This
difference can not be explained. However, even in a theory with quantitative results,
still many challenges arise by trying to control such a system in a precisely defined
way. A lot of research is done directly or indirectly to gain or improve control over
systems in the real world.

In many cases, the experimental realization is not equivalent to the quantitative
theoretical model but contains perturbations that were neglected in the simple theory,
but must be taken into account in the physical world. This is a huge problem in e.g.
the field of quantum computation. The ideas of quantum computers were already
present in the 1980s, the theory was then advanced by Shor (1994) and is quite
established. Still, the realization faces many problems implementing devices with a
larger amount of so called qubits. Qubits are the information saving unit, analogue
to a bit in a classical computational device. The challenge of quantum computation
is the stability and fault tolerance of the whole system.

However, not only the quantum world suffers from uncertainties, a lot of classical
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1 Introduction

particle systems face these challenges, too. Classical systems are subjected to noise,
induced by e.g. Brownian motion. However, a lot of applications demand a high
precision control over micrometer sized particles: imagine a lab on a chip device
working with tiny amounts of chemicals to analyse a sample rapidly, with high
precision and without producing a lot of chemical waste; try to deliver a drug
containing vesicle in a body and release the drug only in the infected region to avoid
treating the whole organism. Repeatable and reliable control is necessary in all these
classical systems over large time scales.

There are several approaches to face these challenges. A very promising one, covering
several of the mentioned examples, is the use of topological protection. The basic idea
is, that a topological quantity defines the state of the system. If a set of perturbations
cannot affect the topology, then the topological quantity is an invariant under these
perturbations and the state itself is protected.

An impressive example from solid state physics are topological insulators (Hasan &
Kane, 2010). These materials are insulating in the bulk, therefore the Fermi energy
is located in the band gap. A topological property of the band, the so called Chern
number, distinguishes topological different bands. The Chern number is an invariant
of the system, similar to the genus of a surface presented in section 2.1. The electron
band in vacuum has a trivial band structure and zero Chern number, topological
insulators have a non-trivial, non-zero Chern number. Connecting a topological
insulator to e.g. vacuum leads to a closure of the gap at the surface of the material
to cover for the difference in Chern number. Hence, conducting edge states exist due
to the topology of the band. These edge states are furthermore protected against
perturbations and inhomogeneities, as an electron on such an edge state cannot be
scattered into a bulk state at the same energy level. The same underlying physics can
be used to explain several transport behaviours in very different systems: Electrons
or holes are transported along an edge in topological insulators; Gyroscopic waves
travel without dispersion on a arbitrary shaped edge as described by Nash et al.
(2015); Colloidal particles can be transported along an edge of the symmetry of the
magnetic pattern they are placed on (Löhr et al., 2018).

In quantum computation the usage of non-abelian anyons (further description in
section 2.2) seems to be a promising idea (Nayak et al., 2008). The non-trivial
topological behaviour upon exchange of anyonic particles can be used to store
information in topological protected qubits. This opens the field of topological
quantum computation, where robustness is gained through an underlying topology.
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In the classical field of high precision control over small particles, many solutions and
ideas exist to deal with perturbations and noise. Micrometer sized magnetic particles
can be transported by a simple, but well defined gradient field (magnetic tweezers).
They can also be manipulated by rotating fields to form rolling clusters (Maier et al.,
2016) or propelling carpets (Martinez-Pedrero & Tierno, 2015) to be transported in
a well defined direction at a certain speed. A drawback combining these methods is
that all particles in the sample are treated equal and individual transport is a further
challenge. Furthermore, optical tweezers and similar techniques create strong, local
minima to trap single particles with forces orders of magnitudes stronger than the
Brownian random forces. Moving the traps transports the particles. Dufresne &
Grier (1998) describe how even several particles can be manipulated individually.

Löhr et al. (2016) found a method of using topological protection to guide magnetic
particles along a magnetic pattern. The particles follow some potential minimum
adiabatically and well defined by topological quantities. Thus, this approach combines
both mentioned fields, topology and controlling small particles. A high precision is
achieved as the transport is not dissipative and can be combined by an arbitrary
control over the transport directions of both paramagnets and diamagnets individually.
All particles of one type show precisely the same transport behaviour and individual
transport is only possible for different particle types.

In this thesis, the topological protected transport of freely rotating and orientationally
locked induced magnetic octupoles, placed on some magnetic pattern and driven by
an external field will be investigated. The topological protection can be combined
with an individual control over identical particles placed, in one unit cell, allowing
for complex transport and braiding loops. Free and locked octupoles are interesting
for both research areas, the anyonic braiding theories in quantum computation and
multi-particle transport problems for various applications.

In chapter 2, the basics of topologically protected transport, as well as the motivation
to use induced octupoles are presented. It will conclude that free octupoles are
promising candidates to follow the non-trivial topology of points equivalent to saddle-
points and can be used to perform a 2D braiding movement. In chapter 3, both
particle types, free and locked octupoles are simulated using varying parameters to
study their behaviour upon external, driving fields on pattern of different symmetries.
The concepts of different ways of individual transport and braiding of free octupoles
are demonstrated. In chapter 4, an experimental setup to study induced octupoles in
the lab is presented, showing the basics of the distinct behaviour of locked octupoles.
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2 Theory

In this chapter, the results of the work of Johannes Löhr on topological protected
transport of magnetic particles is summarized. These results are the theoretical
background of the ideas developed in this thesis. Furthermore the theory on braiding
of particles and the theoretical thoughts on induced octupoles as suitable candidates
for particles that seek saddle-point equivalent points are presented. Finally, the
necessary forces and potentials manipulating free and locked induced magnetic
octupole particles are calculated. This chapter thus proviedes the necessary toolbox
for simulating and understanding the details of the dynamics of octupoles presented
in chapter 3.

2.1 Topological protected transport

Topology is a mathematical field, describing properties of surfaces or other geometrical
objects in space, that are invariant under continuous deformations. One of these
quantities is the genus of a geometrical object, measuring the number of holes,
independent of the specific shape. In figure 2.1 an ensemble of objects with different
shapes and partly identical and partly differing genus are shown. Objects of the
same genus can be deformed smoothly into each other and are therefore topologically
the same. A cup can smoothly be deformed into a doughnut. To change the genus,
the set of deformations has to include cutting or glueing, which is not considered a
smooth deformation. Geometric objects, like the cup and the plate in figure 2.1, are
topologically different.

If physical properties only depend on topological invariants, these properties are quite
robust, as most smooth transformations do not change the underlying topological
quantity and thereby the physical quantity remains unchanged. One of the topological
invariants of a curve on a manifold is the winding number around a hole of the
mathematical manifold M. A periodic pattern can be described by a torus, by
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2 Theory

Figure 2.1: Geometrical objects having a different genus. Surfaces of equal colour are
identical in a topological sense as they have the same genus. Sphere and deformed sphere
(plate) have genus 0 (left, white). Torus and cup have genus 1 (blue). The red (green)
surfaces have more holes, which corresponds to a genus of 2 (3).

glueing the opposite edges of one unit cell together. This transformation is shown in
figure 2.2. Transport on periodic patterns can now be described by a set of winding
numbers around either of the two holes of the torus.

Transport of a particle placed on a periodic pattern can be divided into the movement
in one unit cell and the effective transport by one lattice vector of a position in one
unit cell to the corresponding position in another unit cell. The second part of the
transport corresponds to a non-zero winding number on the torus representing the
periodic pattern. The 2D space of the pattern, on which the movement takes place,
is called action space A.

An external, driving field of constant strength has a parameter space, that can be
described by a sphere. We call this space the control space C. The driving shall
adiabatically transport particles on A, such that no transport occurs, if the driving
field stops. A sphere has genus g = 0 which is shown in figure 2.1. Any loop on
a sphere can therefore be deformed smoothly into a point. Hence, such loops are
equivalent to a field that stays constant throughout time, which obviously cannot
induce transport in the action space. We call any loop of the driving field C-loop to
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2.1 Topological protected transport

Figure 2.2: The sixfold pattern shown on the left can be represented as a torus, which is
shown on the right. Only one unit cell (orange border) is mapped onto the surface of the
torus by glueing the left to the right border and the top to the bottom border respectively.
Due to periodicity, leaving the orange marked unit cell on the right boundary (indicated by
the red arrow) is the same as entering the same, marked unit cell from the opposite side
(green arrow). On the torus, a movement by one unit vector forms into a curve that has
a non zero winding number W around one of the two holes. This is indicated by the red
arrow on the torus representing a closed curve with W = 1.

distinguish them from path loops of the particles in A.

Any closed C-loop of a magnetic field that leads to transport on a periodic pattern
is therefore topological distinct from one leading to no transport. This is a simple
conclusion out of the fact, that this path must not be contractable to a point. If
one observes transport, the sphere has special points, the bifurcations points, that
puncture the control space. Encircling one of those points is different from a C-loop
without any bifurcation point inside. In figure 2.3, these bifurcation points are the
tips of the fence in C. Encircling some of the bifurcation points with an external
field C-loop can transport a particle in different directions.

In Löhr et al. (2016) the topological transport behaviour is shown in a set of
magnetic, colloidal systems. The action space is a periodic magnetic structure giving
rise to a pattern magnetic field Hp. The control space consists of all orientations
of an external magnetic field but those pointing towards the previously mentioned
bifurcation points. Hence, C is a punctuated sphere. Different symmetries of the
pattern lead to differently punctuated control spaces and the curves of Hext can
obtain different winding numbers. These winding numbers control the transport of
para- or diamagnetic particles set on the pattern.

The colloidal potential U ∝ H2 is proportional to the square of the total magnetic
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field H = Hext + Hp. The external field is changed slow enough, such that the
movement of a particle in A can stay adiabatic. The position of a particle is at any
time given by an extremal point of this potential. Paramagnetic particles seek the
maxima, whilst diamagnetic particles are located in minima positions. Knowing
about the behaviour of the extrema therefore explains the movements of particles
in the action space. The mathematical space to describe this is the span of the 2D
action space and the 2D control space and is therefore 4D. The extrema form a 2D
manifoldM in this space A⊗ C, the topology can be visualized in 3D as shown in
figure 2.3. These manifolds are topologically nontrivial objects with a certain number
of holes. Non zero winding numbers of paths for a single type of extrema correspond
to non zero winding numbers in A and hence transport of e.g. a paramagnet into
one direction.

In a pattern with a 6 fold rotational symmetry, called C6, C is divided into three
sections as shown in figure 2.3. The regions are separated by the fence, that connects
the bifurcation points. In the northern (southern) region, 2 minima (maxima) coexist
with 1 maxima (minima) and 3 saddle points per unit cell. The tropics only contain
1 minima and maxima and 2 saddle points. By crossing the fence, whilst leaving the
tropics, a pair of one saddle point and one minima (maxima) is created. Returning
to the tropics, this pair vanishes again, leading to a possible ratchet transport of
particles even if the driving frequency is slow. The ratchet occurs, when the particle
sits in the disappearing minimum (maximum).

The manifoldM is one connected surface of genus 7, as shown in figure 2.3. M can
be split into 3 sub-manifolds for minima, maxima and saddle point. The saddle point
region has genus 3, the others have genus 2. All of them provide a set of winding
numbers, that can be used to explain the non trivial transport of particles into the
next unit cell for a closed driving C-loop.

In A, the area can be split into sub-areas, accessible to both maxima and minima,
and sub-areas accessible to saddle points only. This can be seen in figure 2.3. An
opposite field in C renders the same point in A stationary, thereby changing role
of positive and negative curvature. This converts minima into maxima and rotates
saddle-points by π/2. The sub-areas are connected by a single point, the gate. The
gates are special points in A, that get stationary by a full grand circle in C, shown
in figure 2.3.

Choosing special C-loops therefore leads to transport of minima, maxima or saddle
points in A. At least two of the extrema in A can be transported individually in
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2.1 Topological protected transport

Figure 2.3: Controlspace C, action space A and manifold M of a C6 periodic pattern.
The blue colours correspond to the minima areas, the green colours to the maxima and
the red/purple colours to the saddle point areas. Diamagnetic particles go to minima,
paramagnetic particles to maxima. In C an extra minimum (maximum)exists in the excess
region in the north (south), always accompanied by an extra saddle point. The different
shades of blue (green) indicate the minima (maxima) position in A andM that correspond
to external fields pointing in different sub-areas of C. Dark colours label the two extrema in
the excess region in the north (south), light colours label the tropics and the south (north).
In A only the the bottom half ofM is mapped (indicated by the cut). In C the gates are
grand circles with segments for minima, maxima and saddle points coloured respectively.
In A the gates are points. Pictures from Löhr et al. (2017).

separate, independent directions. The saddle point region is different from the others,
as the accessible region for external fields in the tropics forms a ring around a minima
(maxima) sub-area. An external field C-loop around the tropics of C crosses all 12
gate segments, 6 for each of the two saddle points existing in that area. However, the
symmetry of the sub-area accessible to each saddle point is 3 fold. Hence, a saddle
point driven by such a C-loop has to move twice around the ring in A. Therefore, a
non-trivial behaviour is expected for an external field precessing around the equator.
A saddle point travels 2π in A, while the external field changes by π. The orientation
of the saddle point itself changes by π/2, as both curvatures are exchanged. This
behaviour is sketched in figure 2.4.

Furthermore the fact, that at least two saddle point positions exist in A for any
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Figure 2.4: Expected non-trivial behaviour of a saddle point seeking particle. During
one full external field C-loop in the tropics (left) the particle will run twice around the
interstitial points located above the small magnets (center) while its orientation Φ changes
by π (right).

point in C, excels these stationary points. Particles seeking a minimum (maximum)
will always end up in the same position of one unit cell using arbitrary C-loops.
Manipulating multiple paramagnets or diamagnets differently with one driving C-
loop is generously not possible. In case of particles that seek the proximity of a
saddle point, independent control of two particles is possible to a certain extend, as
there are at least two distinct saddle points for arbitrary external field direction. In
which position particles sit after leaving a minimum, maximum or saddle point, that
vanished at the fence, is quite well understood from the topology of the underlying
manifold inM.

Finally, the idea of creating particles that are attracted by a saddle point itself is
interesting, as physics is mainly determined by the maxima or minima of potentials.
Combining these questions leads to the research presented in this thesis. In theory,
simulations, and experiments, particles that seek stationary points topologically
similar to saddle points, free octupoles, and the behaviour of these particles in
driving, external fields are studied.

2.2 Braiding theory

As presented in section 2.1, the topologically protected transport of saddle points
raises some interesting questions. Whereas minima and maxima in the described
system behave quite similar, saddle points show a quite distinct behaviour. The
main difference is that at least two saddle points exist in one unit cell at any time,
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2.2 Braiding theory

Figure 2.5: Exchanging two indistinguishable particles (red) twice, brings them back into
their original position. This is equivalent to winding one particle around the other. Here
the particle 2 starting at r2 is winding counter clockwise around the particle 1 sitting at r1.
The path of particle 1 can be contracted to a point in any situation, as it is topologically
equivalent to a point. The path of particle 2 can only be contracted in three spacial
dimensions, as shown on the left. In two dimensions the path of particle 2 cannot cross
the r1 location and cannot be deformed into a point. The winding number in this case is
W = 1 for particle 2.

independent of the external field C-loop. This opens new possibilities, as identical
particles can now be manipulated independently, even if they are located in the same
unit cell, rising some questions: Is it possible to exchange two particles in one unit
cell? Can the exchange of the two saddle points change the topological state of the
system?

The behaviour upon exchanging two particles defines the fundamental quantum statis-
tics of fermions and bosons (Nayak et al., 2008). If the particles are indistinguishable,
the exchange can only change the phase α of the systems’ wave function

Ψ(r2, r1) = eiαΨ(r1, r2) (2.1)

Exchanging indistinguishable particles a second time brings them back to their
original position. Exchanging twice is analogue to winding one particle around the
other as shown in figure 2.5. In three dimensions the winding of both particle can be
contracted to a point, centred at its original and final position. Therefore no change
happens in the system, hence the overall wave function has to be the same. But
according to equation 2.1, a second phase shift occurs such that

19



2 Theory

Ψ(r1, r2) = eiαΨ(r2, r1). (2.2)

This can only be true for values of α = 0, π, .... The first case corresponds to bosons,
the second to fermions such that the exchange of two particles is either symmetric
(bosons) or antisymmetric (fermions).

However, in two dimensions the winding around another particle cannot be contracted
without cutting the paths and glueing it back together as explained by Nayak et al.
(2008). The topology of a path, that winds around another particle is different from
trivial closed paths. Now any value for the phase α is allowed, as a system after
winding one particle around the other is topologically different from the original
system. This creates a new type of particles, that obeys a different quantum statistics.
These particles are called anyons. The name refers to the phase α, that now can
take any value.

As the winding can change the state of the system, one can imagine anyons as
tips of a string in the time domain as shown in figure 2.6. These strings cannot
intersect and hence a winding of the anyons is encoded in a braiding of these strings.
In mathematics, taking n strings and the possible winding configurations form a
group, the so called braiding group Bn. The generators of the group elements σi with
1 ≤ i ≤ n− 1 describe the exchange of two neighbouring particles i and i+ 1. The
inverse σ−1i exchanges them the way back whereas σiσi 6= 1 as the resulting braid
has now a different topology although the particles sit in the same positions. The
operations are obviously non-commutative, the braid group is therefore a non-abelian
group. Braid elements are the same, if continuous deformations to the strings can
bring them in the same configuration. Such deformations, that do not change the
topology, are e.g. pulling at the ends of the strings or deforming a string.

The group theory of the braiding group combined with the anyon particles create
interesting possibilities in the area of quantum computation. The main disadvantage
of quantum computation is the error correction (Devitt et al., 2013). Other than
in classical systems, one can not proof read the quantum state containing the
information, as this would destroy the state. It would be better to have a system,
that is by itself quite protected against errors induced by perturbations. One such
system is a system of non-abelian anyons as described in Nayak et al. (2008).

In solid state physics quasi-particles with anyonic behaviour can be found in quasi
two dimensional systems. The electrons are strongly confined in one direction, still
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2.3 Induced octupoles as saddle point seeking particles

Figure 2.6: Three particles in two spacial and one time dimensions. The evolution of
the particles’ positions is shown as a string in the time domain. The left particles (black
and blue) wind around each other, which can be described by the generator σ1σ1. This
is obviously not equivalent to an undistorted system generated by a simple 1. The basic
generators σ1 and σ2 and their inverse generators are shown in the right. The group
generators do not commutate as illustrated above.

the electron stays a fermion. In such systems however, quasi-particles with anyonic
characteristics can emerge. The most commonly known example, presented by Stern
(2008), are the quasi-particles in the fractional quantum Hall effect. The filling factor
ν is found to be a simple fraction m/n with both m and n being integer numbers.
The composite quasiparticle holds a fractional electron charge and a magnetic flux
quantum. Those excitations are anyons and for special filling factors even non-abelian
anyons.

2.3 Induced octupoles as saddle point seeking

particles

In section 2.1 the idea of manipulating particles that behave like saddle points was
introduced. It was motivated that particles that are attracted by a saddle point of
some potential U show some interesting behaviour. In this section, an suggestion of
creating such particles as free magnetic octupoles is presented.

A trivial, isotropic, symmetric particle cannot fulfil this requirement, as it’s symmetry
does not match the symmetries of the saddle point. A minimum or maximum can be
described rotationally symmetric in a first approximation. In contrast to a minimum
or maximum, a saddle point is characterized by different curvatures in the different
directions, indicated by an indefinite Hessian matrix. This non-isotropic symmetry
has to be considered when creating a particle, that seeks the vicinity of a saddle-point.

21



2 Theory

In a first approximation, the symmetry of a saddle-point is basically characterized by
a switching of the curvature sign with each rotation of π/2. The change in the sign
can be compensated by using two types of materials, that react effectively opposite
in a given external field. Joining these materials in a "lucky clover" like arrangement
can reproduce the symmetry of a saddle point, making it suitable to be attracted by
saddle points.

In reality, this type of composite particle will rather seek the point of maximal
difference of the eigenvalues of the Hessian matrix, as shown in section 2.4. For
special cases, this can coincide with a saddle point, but generally these points are
different. Nevertheless, for a slowly varying potential those positions should behave
at least similar to a saddle point and can be considered topologically the same. This
will be qualified in section 3.1.3.

If the external field is a magnetic field, an induced octupole can be realized by
combining two diamagnets with two paramagnets. The external field induces a
magnetic dipole in each individual particle, rendering an induced octupole in
the composite particle, if the strength of all dipoles are exactly the same. If the
strength do not balance, a dipole or quadrupole moment remains. Such an induced
octupole is shown in figure 2.7. Apart from the position, induced octupoles have an
additionally degree of freedom, the orientation. Two cases are studied here. Firstly,
a particle, that can rotate freely, finding the right orientation depending on the given
local structure of the potential. Secondly, the case of fixing the orientation to some
external, induced direction.

In both cases, the octupoles are placed on top of a periodic, magnetic pattern and can
be manipulated with an external magnetic field in analogy to the setup described in
section 2.1. In the following sections, the potential and forces acting on an octupole
and the magnetic field of the underlying pattern are derived.

2.4 Potential of free octupoles

In order to get the forces acting on the octupoles introduced in section 2.3 we need
to calculate the magnetic potential for this particle type. Therefore knowledge on
the magnetic field as well as on the composite particle geometry is necessary. In
this section, the potential for a free octupole is derived. Further information on the
pattern field is given in section 2.6.
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2.4 Potential of free octupoles

Figure 2.7: An induced magnetic octupole consists of two paramagnetic spheres (red) and
two diamagnetic spheres (blue). The diamagnets can be e.g. superconducting spheres with
χ = −1, the paramagnets have then to be chosen oppositely. The angle Φ characterizes the
orientation of the octupole in A. The vector rêp (rêd) gives the position of one paramagnet
(diamagnet) relative to the center of the octupole. The projection of the external, driving
field Hext into the x-y-plane is shown in blue. In the case of locked octupoles, the angle γ
gives the locking towards the external field. A schematic picture, used in the later plots,
is shown on the right. The dot gives the position of the octupole, the line indicates the
direction of the paramagnets and therefore the orientation Φ.

The magnetic field in this setup consists of the external, driving magnetic field Hext

and the pattern field Hp. The magnetization of induced magnetic particles is always
parallel to the magnetic Field. It is given by

M = χH (2.3)

where χ is the susceptibility of the material. The magnetic potential, calculated as
the potential energy per volume, for such a particle is therefore given by

Umagnetic = −µ0H ·M = −µ0χH
2 = −µ0χ(Hext·Hext+2Hext·Hp+Hp·Hp). (2.4)

where µ0 is the vacuum permeability. Integration over the particles volume gives
the full magnetic energy, however, the particles are considered small compared to
variations in the magnetic potential. Hence, the volume integration is neglected.

The external field is considered homogeneous throughout the sample, therefore H2
ext

is a constant shift of the Potential U . Furthermore, the external field strength is
considered strong compared to the pattern field, so that the last term in equation 2.4
can be neglected. In that case only the direction, not the magnitude of the external
field is important for the driving of the particles. Combining these arguments, we
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can define a universal potential

U = Hext ·Hp. (2.5)

A paramagnet (χp > 0) subjected to this potential maximizes U and a diamagnetic
particle (χd < 0) minimizes U by moving to another position, as the colloidal
potential is

Ucolloid = µ0χcolloidU (2.6)

The octupole, consisting of two paramagnetic particles and two diamagnetic particles
as shown in figure 2.7, does not react to the potential itself, as both contributions
cancel out in a first approximation. However, given the non-zero radius r of the
particles, each particle will see a slightly different single colloid potential, such that
the octupole potential is

UOctupole(x) =− µ0χp (U(x + rêp) + U(x− rêp)) (2.7)

− µ0χd (U(x + rêd) + U(x− rêd)) (2.8)

with êp (êd) being a unit vector in the direction of one paramagnet (diamagnet).
This can be simplified by implying that both particles have the same magnitude of
magnetisation χd = −χp and taking the maximal diamagnetic susceptibility χd = −1.

By adding a zero, this term can be brought in the following form:

UOctupole(x) = −µ0r
2

[
(U(x + rêp)− U(x)) + (U(x− rêp)− U(x))

r2

−(U(x + rêd)− U(x)) + (U(x− rêd)− U(x))

r2

]
(2.9)

which is for r → 0 proportional to the second derivative of the universal potential
evaluated in the directions of paramagnets and diamagnets respectively. Thus, the
potential of an octupole rotated by the angle Φ relative to the x axis can be written
as

UOctupole(x,Φ) = −µ0r
2t(Φ) : ∇∇U(x) (2.10)

where t(Φ) takes the orientation of para- and diamagnets into account. As the
directions of both magnetizations are strictly orthogonal, we get
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t(Φ) = R(Φ)

(
1 0

0 −1

)
RT(Φ) (2.11)

with R(Φ) being the 2D rotation matrix. The matrix entries +1 and −1 correspond
to the directions of paramagnetic particles with χ = 1 or diamagnetic particles with
χ = −1 respectively.

A freely rotating octupole will at every position minimize its energy by rotating
around the z-axis. In this orientation, the paramagnets and diamagnets each are
oriented along one eigenvector of the Hessian matrix. Instead of rotating the t matrix,
∇∇U can be replaced by its diagonalized form

RT(Φmin)∇∇UR(Φmin) =

(
λ1 0

0 λ2

)
, (2.12)

which simplifies equation 2.10 as follows:

UOctupole(x) = −µ0r
2

(
1 0

0 −1

)
:

(
λ1(x) 0

0 λ2(x)

)
= −µ0r

2 (λ1(x)− λ2(x))

(2.13)

where λ1 has to be the larger eigenvalue, as it is connected to the pair of paramagnets
that tries to maximize the universal potential, leading to an overall negative octupole
potential. λ1,2 can be derived from the roots of the characteristic polynomial of the
Hessian matrix of U .

λ1,2 =
Uxx + Uyy

2
±
√

(Uxx + Uyy)2

4
+ U2

xy − UxxUyy (2.14)

where Uxx = ∂x∂xU . A similar definition applies to Uyy and Uxy. Using equation 2.14
and equation 2.13, we get the expression for the minimal energy W of an octupole
located at a certain position x

W (x) = −µ0r
2 (λ1 − λ2) = −2µ0r

2

√(
Uxx − Uyy

2

)2

+ U2
xy (2.15)

A freely rotating octupole in an universal potential U(x) will seek the minima of
W (x), thus minimizing this energy leads to the positions of adiabatically driven free
octupoles. The force acting on such an octupole is
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F free = −∇W (2.16)

and the orientation of the octupole is aligned with the eigenvectors ê1/2
U of U

êd = ê2
U (2.17)

êp = ê1
U (2.18)

where ê1
U belongs to the larger eigenvalue λ1.

2.5 Potential of locked octupoles

A second type of induced octupoles emerges by locking the orientational degree of
freedom. This is of interest as octupoles containing high temperature superconductors
are used in chapter 4. The flux quanta penetrating those type-II-superconductors
lock the orientation at a certain orientation towards the external field Hext. Thus
the equations 2.15 - 2.18 cannot be used.

Locking the octupoles direction prohibits the rotation to find its minimal energy
at each position x. Up to equation 2.10, we have not used the rotational degree of
freedom and can use this expression for the energy of a locked octupole for r → 0. If
we take the finite size of the octupole into account, it is easier to use equation 2.8.
In the simulations, the force was derived by simply adding the forces acting on each
sphere and applying it in the center of mass of the octupole. The torque on the
octupole vanishes, when the angle between the external field and the orientation
is locked to the initial angle, because the torsional constant from the flux quanta
is orders of magnitude stronger than the magnetic torsional constant. The initial
angle γ is kept constant throughout any field C-loop. The strength of the torsional
constant of the flux quanta legitimises the approximation that all forces act in the
common center of mass. We can write the force on a locked octupole as

F locked = χp (F (x + rêp) + F (x− rêp)) + χd (F (x + rêd) + F (x− rêd)) (2.19)

with F (x) = µ0∇U(x). The unit vectors êp and êd have to be determined by
the fixed orientation of the octupole. The diamagnetic positions are rotated by an
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arbitrary, but fixed angle γ with regard to the external field projection, as sketched
in figure 2.7. This type of locked octupoles will be studied in section 3.3 and in the
experiments in chapter 4.

êd = R(γ)
Hext

Hext
(2.20)

êp = R(
π

2
)êd (2.21)

2.6 Pattern field for given symmetries

To describe the pattern, we must specify its symmetry and its lattice constant a.
We can write the pattern field as Fourier series over the reciprocal lattice vectors of
the periodic lattice. Let q ≈ 2π/a be the modulus of the smallest reciprocal lattice
vector. The particles are located at an elevation z > q−1 above the pattern, such
that only the first Fourier components of Hp are relevant. This elevations depends
on the lattice constant a. Therefore, detailed information on the magnetic pattern
itself is not necessary and opens the possibility to build these patterns in different
ways, still getting comparable results, as long as the basic symmetries are respected.

As interesting changes appear for a six fold symmetric pattern, we start with a
pure C6 pattern. According to Löhr (2017), the pattern field gets decomposed into
trigonometrical functions. The reciprocal lattice vectors of a two dimensional six
fold pattern are

qi =
2π

a

(
− sin(2πi/6)

cos(2πi/3)

)
(2.22)

for i = 1, 2, 3. The remaining component at high elevations at a given point xA in
the action space is then proportional to

Hp ∝
3∑
i=1

2π

a

 − sin(2πi/3) sin(qi · xA + φ)

cos(2πi/3) sin(qi · xA + φ)

cos(qi · xA + φ)

 (2.23)

where φ is a parameter allowing a smooth change of the symmetry.

For a C6 six fold symmetric pattern the extra phase vanishes, φ = 0. An improper
six fold symmetric pattern S6, where a rotation by π/3 has to be combined with a
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mirror operator to retrieve a pattern symmetry, can be achieved by setting φ = π/6.
Values in between these extreme cases break the C6 respectively S6 symmetry to a
lower C3 three fold symmetry. Higher values of φ switch periodically between a C6

and a S6 pattern via all intermediate C3 symmetries.
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We simulate the behaviour of octupoles placed on a magnetic pattern, such as
the one shown on the left side of figure 3.1, as a function of the time dependent
external driving field. The octupoles are simulated as individual Brownian particles.
Interactions between the octupoles are neglected, as their induced fields are small
compared to the potential inducing, external fields. As we are mostly interested in
the paths of single octupoles, no hard core repulsion is introduced. The basic inputs
of the python script, simulating the system, are particle types, starting positions and
a stepwise defined driving C-loop. The output data mainly consists of the position
in A and orientation of the octupoles at each time step. Further information on the
used scripts can be found in appendix A. All paths, observations, and conclusions in
this chapter are based on the results from the simulations.

Section 3.1 will focus on the behaviour of free octupoles, being the most promising
candidates to show the topologically characteristics equivalent to saddle points.
A comparison to saddle points is included to show the topological equivalence of
both. The exchange and the braiding of two or more free octupoles is examined in
section 3.2. The different behaviour of locked octupoles, locked to the driving field
direction, will be described and explained in section 3.3.

3.1 Free octupoles

The forces and potential of free octupoles were derived in chapter 2.4 (equations 2.15
- 2.18). In the center of figure 3.1, the potential landscape of a free octupole for an
external magnetic field pointing north is depicted. We can spot tree distinct regions.
The huge, central, yellow region I0 above the central magnet is inaccessible to the
octupoles but accessible to para- or diamagnets. The small yellow regions above
the smaller magnets, the so called interstitials, are only accessible for fields close
to the equator. However, the center of the interstitials cannot be reached in a C6
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Figure 3.1: The sixfold pattern (C6 symmetry) in different representations. From left to
right: The pattern of neodymium magnets, as used in the experiments. The large, golden
magnets are magnetized upwards, the smaller, silver ones are magnetized downwards. The
coloured background in the center indicates the universal potential of a free octupole for
an external field pointing up (θ = 0). The colour bar on the very right relates the colours
to arbitrary units, scaling the potential strength. Yellow colours are global maxima, blue
colours global minima. On the right side distinguishable, special regions are sketched. The
yellow triangles are the interstitials I1 and I2, the blue ellipses indicate the basins A, B, and
C and the blurred yellow circle the region I0. In each representation, one unit cell is framed
red. The black arrows indicate the primitive lattice vectors a1, a2, and a3 = a2 − a1.

symmetry. These areas are named I1 and I2, as there are two of them per unit cell.
The blue regions are the basins, containing the octupoles for a external field in the
northern or southern hemisphere. The three distinct regions per unit cell are called
A, B, and C. A scheme of these areas is shown in the right part of figure 3.1.

We will now simulate the behaviour of free octupoles in presence of an external,
driving field. Therefore the loops of free octupoles, hence the paths of free octupoles
in the action space A are studied. The octupoles are driven by some external
magnetic field that moves on a C-loop in the control space C. First, only precessing
fields are taken into account. Second, pure polar orbits are investigated. Third, the
equivalence to saddle points is shown and the pattern symmetry is changed from C6

to S6.

3.1.1 Precessing external field

In figure 2.4 an non-trivial response of a free octupole to an external field running
around the equator is predicted. In order to study this phenomena, the paths of
free octupoles driven by a precessing external field Hext are examined. As the field
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strength does not matter, the external field is defined by a fixed precession angle θ
and the phase ϕ(t), which varies with time. Starting from the north pole, θ is varied
stepwise to study the different octupole paths at different, fixed values of θ. After a
full C-loop, the external field points in the same direction again, ∆ϕ = 2π. Two kind
of loops, trivial basin loops and non-trivial interstitial loops are observed. In this
section, both observed loop types, as well as an analyses on the speed during these
loops are presented.

Topologically trivial basins

For θ < θc = 80.85° the octupoles run in a closed basin loop around one of the
basins A, B or C. The radius of the loop in A changes with larger values of θ in the
C-loop. Furthermore, the shape of the loop differs more and more from a symmetric,
circular path. Some exemplary loops in A, as well as the orientations of the octupoles
for different precession angles θ of the driving field are shown in figure 3.2.

The orientation of a free octupole during one of these cycles stays approximately
the same and depends on the chosen basin. The paramagnetic particles within the
octupole always point towards the large, central area, whilst the diamagnets are
oriented towards the interstitials. Paramagnets and diamagnets switch role for fields
precessing below the equator, leading to an effective rotation of ∆Φ = π/2 of one
octupole, when comparing it to its orientation for fields in the other hemisphere.
Furthermore, the positions in the basins change by a loop’s phase π in A, leading to
opposite positions for same external phases ϕ(t). This phase is assigned analogue
to the colour assigned in the figure 3.2. For a reversed external field, the minimum
position of an octupole coincides with the non-reversed minimum position, however
with a π/2 change of orientation.

The relative orientation between two octupoles in two independent basins is ∆Φ =

± π/3, if the two basins have different indices A, B or C. The position in the basins
is correlated to the phase ϕ(t) of the driving field, such that all octupoles are e.g.
on the right, if the field points right (left) for fields in the northern (southern)
hemisphere. This leads to different starting points in the various basins in relation
to the individual surrounding which can be seen in figure 3.2 by comparing the color
coding of the different loops.
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Figure 3.2: Paths for different precession angles, leading to closed basin loops in the
basins A, B, and C. The colour of each path is changing according to the external field
direction, as indicated in the insets. The field is rotating in a positive sense. At equally
distanced times, the octupole is indicated by the black symbol, giving insight to its
orientation. The octupoles in different basins are oriented with a relative orientation of π/3,
the orientation itself stays almost constant during one loop. For precession angles θ closer
to the equator of C, the path is slightly deformed and deviates from a circle (bottom left).
An equivalent C-loop in the southern hemisphere (bottom right as compared to top right)
rotates the free octupoles by π/2 and leads to a position in the loop in A that is shifted
by a relative phase of the loop of π. This loop’s phase is assigned to the position of some
octupole on a given path, analogue to the colour in this figure. The size of the area included
in one path depends heavily on the precession angle. Close to the poles the size decreases
to a point (upper left).
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Topologically non-trivial interstitial loops

Driving C-loops with a precession angle closer to the equator θc < θ < π − θc lead to
a topological transition of the loops in action space. The octupoles do not run
around the basins any more, but run around one of the interstitials in a non-trivial
way. In figure 3.3 such trajectories double-triangle loops are shown. During one
cycle of 2π of the external field the octupoles encircle one of the two interstitials I1 or
I2 twice. The winding occurs in the opposite direction compared to the external field
direction. We can assign the driving C-loop a winding number of WC = 1. The path
loop then has a winding numberW = −2. The path loop is split into six subsegments
meeting in the turning points. There are two types of segments, one closer to the
interstitial and one further away, leading to a kind of double-triangle-shape. The two
types of segments are alternating during one cycle of the driving field. For θ = 90°
the segments collapse and a single path, the triangle loop, remains as shown in the
bottom left of figure 3.3.

A non-trivial precessing field C-loop θc < θ < π − θc rotates the octupole by π. On
each segment, the octupole is rotated by π/6, which leads to an orientation rotated
by π/2 after the octupole encircled the interstitial once. The two collapsed positions
for θ = 90° are therefore distinguishable by the orientation Φ of the octupole. Two
octupoles on different interstitials I1 and I2 have a relative orientation of π/2. If we
assign a phase to the position in one of the path loops (analogue to the colour in
figure 3.3), the octupole in the other has a relative phase shift of approximately π
(the path has to be rotated by 180° to be comparable). Hence when e.g. on I1 the
octupole is on a fast, inner, ratchet like segment, the octupole on I2 is on a slow,
outer, adiabatic segment. Due to the ratchet the phase shift is varying slightly from
π.

As the interstitial points in the center of the small magnets itself cannot be reached,
the winding is topologically different from the loops around the basins, that can
contract to a point for the external field parallel to the z-direction. The described
behaviour is topologically non-trivial as expected from the theoretical thoughts in
section 2.1.

For θ > 90° the collapsed segments of the triangle loop split in a symmetric way to
another double-triangle loop. The former inner paths are now the outer ones and
vice versa. Increasing the precession angle further towards the south pole leads to a
equivalent topological transition at θ = π − θc towards the closed, trivial basin loops
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Figure 3.3: Paths for different precession angles of the driving C-loop leading to non-trivial
loops around the interstitials. The driving occurs in a positive sense. The octupoles at
different interstitials are oriented with a relative orientation of approximately π/2 at any
time. The orientation changes by π for one full cycle of the external field. Close to the
transition θ ≈ θc to the basin loop of figure 3.2 a fast ratchet occurs (top left). A similar
paths in the southern hemisphere leads to similar orientations but a position in the loop
that is shifted by π (bottom right). The closer the precessing field is to the equator, the
narrower is the gap between the paths segments. For a precession on the equator of C, the
two path segments collapse (bottom left) and form a triangle loop. The other cases show
double-triangle loops. The colour of each path is changing according to the external
field direction, as indicated in the insets. The black octupole symbols give insight into the
octupole’s orientation at certain, equally spaced time steps.
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Figure 3.4: Speed of the octupoles during one external field C-loop. For an octupole
running around one of the basins (upper plot), four deep minima separated by a minor
maximum and a plateau can be seen. The phase shift between two basins is π/3. For the
loops around an interstitial point (bottom) six minima exist, separated by three major
and three minor maxima, each corresponding to one of the six segments of the path. The
positions of the minor maxima in the basins case correspond to the minor maxima in the
interstitial case, the major maxima are slightly shifted in positive time direction, indicating
a ratchet transition.

in one of the basins with orientations shifted by ∆Φ = π/2 as described above.

Paths velocity

The velocity throughout the described paths is not constant, which can be seen
in figure 3.4. There are points in A, where the octupoles are slower or even stop.
Those waiting positions are located at each turning point separating the three
faster segments from the three slower ones on the double-triangle loops around the
interstitials. If θ gets closer to the poles, these positions travel on a circular path
towards the basins in A. On basin loops the octupoles do not stop at some corner.
Still, the waiting positions are clearly visible in the speed plot 3.4, splitting each
path into four segments. Connecting these points creates a line to the center of the
basin in A.

35



3 Simulations

Figure 3.5: Paths for different values of θ coloured with the local speed of the octupole.
Around I1 for precession angles 81° and 85°, around I2 83° and 90°, and around B 75°, 60°,
and 45° (from outside to inside). The transition towards a transport around one interstitial
occurs by connecting two slow parts of the basin loop with a fast ratchet. Interstitial loops
close to the transition angle show a slight asymmetry in direction of the driving field.

Transition

The topological transition from the movement around the basins to the winding
around the interstitials occurs via ratchets, combining loop segments of different
basin loops to a double-triangle loop around the interstitial. This can be seen in
figure 3.5. The segments, that used to be the slower segments in a basin loop, remain
as the slower, outer segments of the double-triangle. At the end of such a segment
on a double-triangle loop, an octupole can no longer follow the path of the former
trival basin loop, but jumps to another stable position via a ratchet. For angles
shortly after the transition, the path is clearly asymmetric, as the octupole tries to
follow the basin loop for a short while, until the ratchet transition takes place. This
asymmetry gets smaller for precession angles closer to the equator and vanishes for
the triangle loop at θ = 90°.

A ratchet itself is not time reversal, due to the fact, that the octupoles no longer
adiabatically follow some minimum but slide on the path of steepest decent. An
inverse field C-loop can not push the octupole up the same way it slid down. Therefore,
changing the direction of the external field changes the asymmetry. This breaking of
symmetry is a clear sign that the described transition actually is a ratchet.
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The transition can also be seen in the plot 3.4, as the small maxima are located
at the same position, whereas the positions of the large maxima, describing the
ratchets, are slightly shifted in positive time direction. Reversing the time changes
the position of the ratchet jump. Furthermore, the speed on the slower segments
stays comparable, whereas the speed on a ratchet close to the transition is orders of
magnitude higher. Apart from that, a ratchet is characterized by a velocity almost
independent on the driving frequencies, which correlates to the picture of a particle
sliding down a slope until it can be transported adiabatically again.

The ratchet vanishes for θ = 90° on the equator due to symmetry. The role of
adiabatic and ratchet segments of the double-triangle loop interchanges at this
precession angle and only adiabatic segments exist in a triangle-loop.

3.1.2 Transport with polar orbits

Apart from simple precessing fields, another group of simple external field modulations
is the group of polar orbiting grand circles. They are characterized by the azimuthal
angle ϕ of the C-loop, measured with respect to the lattice vector a1 and a varying
polar angle θ(t). A combination of polar orbit segments and precessing fields can be
used to design arbitrary C-loops. In this section, the simulation results of octupoles
driven by polar orbiting field C-loops are presented.

As shown in section 3.1.1 the octupoles remain in the basins for external fields close
to the poles. They remain in the space around an interstitial for external fields close
to the equator. On a polar orbit, both regions are visited alternatingly, leading to a
transport into neighbouring basins which is shown in figure 3.6. The azimuthal angle
determines the transport direction. As transport only occurs along the primitive unit
vectors, a stepwise transition separates these direction. If the external field rotates
in a direction parallel to a unit vector, the paths are a straight connection into the
neighbouring basins. Deviations from these orientations lead to more curved tracks
through the action space.

As only two different interstitials exist, maximal two individual octupoles can be
transported separately. The third basin, if filled at the beginning, is emptied with
crossing the tropics for the first time. It can not go back, as it is emptied with a
non reversal ratchet. This behaviour can be seen in figure 3.6. For ϕ ∈]−30°, 30°[
basin A is emptied, for ϕ ∈]30°, 90°[ basin B, basin C respectively continued. The
transition of the transport direction correlates with a transition of basin stability.
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These transition angles are separated by 60° due to the pattern symmetry and
occur for fields aligned with the reciprocal lattice vectors ϕ = 30°, 90°, . . . , hence
in between the primitive lattice vectors. Parallel to the primitive lattice vectors
ϕ = 0°, 60°, . . . another transition occurs. The direction of the first ratchet of an
unstable basin changes direction (compare ratchet jumps from basin B in the lower
row of figure 3.6). Along such a direction this jump is not topologically protected
and an equal probability for both directions exists.

The two octupoles in the stable basins follow each other with a loop’s phase shift of
π and have a relative orientation of π/2. The orientation of one octupole slightly
varies during one C-loop, but does not fully rotate the octupoles, such that no net
phase is accumulated along these paths.

Transport of octupoles in different directions can be archieved with more complex
C-loops. In section 3.2 this will be discussed in more detail.

3.1.3 Topological equivalence to saddle points

In section 2.3 free octupoles were motivated as particles with a topological behaviour
similar to saddle-points. This assumption can further be verified by comparing the
simulation results of free octupoles to the path data of a saddle-point. In this section
the topological equivalence of octupoles and saddle-point-seeking particles will be
shown by comparing the particle loops obtained by precessing external fields.

When calculating the position of a saddle point of U at each phase of the external,
driving field, a path loop of a theoretically saddle point seeking particle, following a
saddle point, is retrieved. In figure 3.7 such paths of saddle points, together with
paths of free octupoles are shown. The equivalence to saddle points in a strict sense
only exists for precession angles close to the poles. For other angles the paths deviate
in form, still they intersect at six points. These points exist when the projection of
the external field is aligned with the direction of one of the primitive lattice vectors
of the pattern. That means the projection of Hext in the x-y-plane is parallel to
some ai. However, topologically speaking, both paths are the same as both wind
around the basins once per 2π of the external field. Even the orientations are aligned
throughout the external field C-loop.

In Löhr et al. (2016) the fence, at which the topological transition takes place,
is found in the vicinity of θ = 60°. As the octupoles have a transition angle of
θ = 80.85° a region exists, where both particles, the octupole and the saddle-point
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3.1 Free octupoles

Figure 3.6: Paths of octupoles for different azimuthal angles in polar orbits, starting in
one of the basins A (black), B (blue) or C (red). Depending on ϕ one octupole is on an
unstable track and hops irreversibly to on of the stable positions (A in the top, B in the
bottom). Along directions of high symmetry e.g. ϕ = 0° or 60° the paths are straight and
get deformed the further ϕ differs from these directions (top left, bottom left compared to
right). A transition in transport direction and unstable basin occurs at ϕ = 30°. Top row
is transported along a1, bottom row along a2. The paths are coloured according to the
external field phase shown in the insets. The orientations are given at equally distanced
times by the rotation of the octupole symbols.

seeking particle, behave differently, which can be seen in the top right of figure 3.7.
Closer to the equator the octupoles and the saddle points behave similar again,
though the shape of their paths differs quite strongly. Still, the non-trivial behaviour
predicted in section 2.1 for a saddle point is verified by the saddle point data as well
as by the octupole paths.

These data sets show that except for a small range of precession angles θ ≈ 60°,
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Figure 3.7: Comparison of free octupole paths with saddle point positions. No difference
in position or orientation is visible for precession close to the poles (top left, inner paths).
The form of the paths deviate for larger values of θ with six intersections at special field
directions and comparable orientations (top left, outer paths). The saddle point transition
occurs earlier than the octupole transition, giving raise to a region where both behave
topologically different (top right) and only intersect twice. Closer to the equator the
topology of the paths is the same again, the form differs with six intersections at special
field directions (bottom row). The paths are coloured according to the external field phase
as indicated in the insets. The orientation is indicated at equally distanced phases of the
external field (nπ/3 with n ∈ [0, 5] ), in the top left these times are shifted by a phase of
π/6 for better clarity.
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3.1 Free octupoles

free octupoles behave like saddle-point seeking particles in a topological sense. In
both limits, close to the poles and close to the equator, the same paths topology
is found. Therefore, free octupoles are protected by the same underlying topology
as the particles seeking maxima and minima investigated in Löhr et al. (2016) and
Rossi et al. (2017). This topological protection makes their movement robust against
small perturbations like a random Brownian force.

3.1.4 Pattern symmetries

Apart from the described C6 pattern, with proper rotational symmetry, a smooth
transition towards a S6 symmetry is possible by introducing a phase factor φ as
shown in section 2.6. The S6 symmetry has improper rotational symmetry, therefore
a rotation of π/3 must be combined with a reflection along some given axes to retrieve
a pattern symmetry. For each pattern three points of at least three fold rotational
symmetry, C3, exist as described in Löhr et al. (2017). For special phases φ, one of
these can acquire C6 or S6 symmetry.

The potentials and the simulation results for free octupoles placed on these potentials
are presented in this section. At other symmetries new loop types arise. These path
loops give further insight and understanding into the topological transition from
basin loops to double-triangle loops. Only precessing C-loops are used to drive the
octupoles in this section.

Potentials

In figure 3.8 the free octupole potentials for different patterns are shown for an
external field pointing exactly north. By varying φ, the symmetry changes from C6

for φ = 0 to S6 at φ = π/6. The S6 pattern can e.g. be build macroscopically with
equal sized magnets and empty spots as indicated by the circles in figure 3.8. Values
of φ greater than π/6 transform the pattern back into a C6 pattern, now centred
around one of the other symmetry points (blue and red triangles in figure 3.8).

In the case of a C6 symmetry, the point of highest symmetry is centred in the
inaccesible region I0. The other two symmetry points indicate the position of the
interstitial I1 and I2. For symmetries varying from C6 the two interstitials are not
equal any more. One becomes the major interstitial surrounded by the basins and
the other the minor one, which is connected to I0 with a potential ridge. For an
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Figure 3.8: Potential landscape for different symmetries of the pattern. From left to right:
the symmetry’s phase φ changes the C6 symmetric pattern into a S6 pattern. For the
extreme cases the magnets of a macroscopic pattern are indicated by yellow (grey) circles,
that are magnetized up (down). Each lattice has three points per unit cell showing a C3

symmetry. These are indicated by a red, a blue, and a black triangle. One of these can
show a proper (C6) or improper (S6) 6 fold symmetry for special values of φ. For φ = 0
the highest symmetry is at the black point above I0, for φ = π/6 around the blue point
at I1. In between the major (blue) and minor (red) interstitials are no longer equivalent.
In each potential, one unit cell is depicted in red. The unit cells are located around the
lattice points of highest symmetry in the extreme cases. Note that the symmetry relates to
the underlying magnetic pattern, not the resulting potential, that always shows at least S6
symmetry.

S6 symmetric pattern the minor interstitial and the I0 region are now equivalent,
leaving one clear interstitial in the center of a big blue basin.

The symmetry of the potential landscape always shows at least a S6 symmetry
during this transformation. This originates from the invariance for the free octupole
potential under a transformation exchanging the direction of magnetization in the
individual regions. The octupole’s orientation merely changes by π/2, the positions
are kept unchanged and therefore the potential landscape is unchanged.

Paths topology and orientations

The simulation results show further loop types of free octupoles, that are topologically
distinct from those presented in section 3.1.1. The new loop types are shown in
figure 3.9 and an overview of the full phase-space is given in figure 3.10.

Starting with a precessing field close to the poles we get trivial basin loops, the
octupole’s paths in A, in all symmetries. However, the basin in the pure S6 case is
now split into six basins, giving the possibility of six independently stable octupoles.
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3.1 Free octupoles

Figure 3.9: Simulated paths of free octupoles placed on a pattern with a symmetry other
than a C6 symmetry. Left side of the figure shows a full S6 symmetry around I1. For small
precession angles six stable positions are possible, leading to six basin loops. For larger
angles these collapse into one big circle, the attractor loop around I1 with a orientational
phase rotation of π during one field C-loop. The attractor loop gets fed by six feeder
loops, that are irreversibly emptied during the first field cycle. Right side of this figure
shows an intermediate symmetry (φ = 0.5π/6). Deformed basin loops are present at
small values of θ. Driving fields with a larger precession angle lead to a path around the
remaining interstitial that winds around the center once per external field loop (W = 1) in
the same direction as the driving field. Three handles connect the segments of this handle
loop. Close to the equator of C the non-trivial double-triangle loop shown in figure 3.3 with
winding number W = −2 is retrieved again. A smooth transition shifts the inner branches
of the loop with W = 1 to the other side of the interstitial point leading to W = −2. The
paths are coloured according to the external field phase as indicated in the insets. The
orientation is indicated at equally distanced phases of the driving field. The driving is in a
positive sense.
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In Löhr et al. (2017) a monkey saddle of U is described for this particular symmetry.
Combining the three-fold symmetry of the monkey saddle with the two fold symmetry
of the octupoles explains the existence of six stable positions.

Furthermore, the S6 case shows a different winding behaviour around the interstitials.
As shown in figure 3.9 after a topological transition the octupoles move around the
interstitial in one big circle just once per external field C-loop with winding number
W = 1. The speed of the octupole on this attractor loop is not uniform, but can
be split into six slow segments inherited from the basin loops and six fast connection
parts. When starting the driving field, the octupoles still start in one of the six
basins. These basins get emptied during the first field cycle leading to feeder loops,
that are irreversibly emptied once the particle reaches the attractor loop.

As only one interstitial remains, only one independent octupole position remains for
C-loops approaching the equator. Closer to the equator of C, the attractor loop’s
size decreases leaving just one stable point in the center for an arbitrary external
field on the equator, making this remaining interstitial accessible for octupoles.

The orientations of the newly inserted basin positions are rotated by π/6 compared
to the neighbouring ones. On the attractor loop, the octupole adapts to each basin
orientation Φi along the path, again resulting in a rotation of ∆Φ = π for a C-loop
cycle. Even in the case of a precession along the equator of C this orientation
behaviour remains, such that the free octupole, that sits in one position, rotates with
half the angular velocity of the external field.

Other symmetries show a topologically equivalent behaviour to the C6 case for
precession angles close to the poles. The occurring basin loops are slightly deformed,
respecting the three fold symmetry that remains for all values of φ 6= n× π/6 with
n ∈ Z0. Nevertheless, the transition towards the non-trivial double-triangle loops
shown previously in figure 3.3 no longer is the same. From the basin loops (winding
number W = 0) a transition towards a handle loop leading the free octupoles once
around the interstitials in the direction of the driving field occurs. The segments of
the triangle of this transition state are connected with "handles" that get smaller for
symmetries closer to a S6 pattern. The winding number around the interstitial of a
handle loop is W = 1, while the rotation for all paths around an interstitial remains
to be π. Larger values of θ deform this paths in a way, that the inner path segments
move towards the center of the triangle. At this point the transition towards the
double-triangle loop around the interstitials occurs, with a winding number of two
(W = −2).
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3.2 Braiding with free octupoles

The range of precession angles θ, in which handle loops occur, grows with larger
deviations from a fully C6 symmetric pattern as shown in the phase diagram 3.10.

Besides the major interstitial, a minor interstitial exists, vanishing only in the pure
S6 case. If the deviation of the C6 pattern is still small, for precessing fields close to
the equator the double-triangle and triangle loops around the minor interstitial get
stable again. In between, the area inside of a loop that remains as an intersection of
all paths’ segments, is too small to cover the larger extension of the minor interstitial.
Therefore, a second stable octupole exists only close to the equator for symmetries
close to a C6 symmetry.

The change in paths topology and stable positions throughout different symmetry
values of φ and different precession angles θ are summed up in the phase diagram 3.10.
The change of loop size is encoded in the brightness values of the individual panels.
Brighter values encode a smaller remaining area inside the loop. In the extreme case
the colour white encodes the single stable point.

It can nicely be seen, that a transition from one symmetry type towards the other
occurs. The attractor loop in the S6 case arises from the handle loop by shifting
the inner segments further out, growing in size and thereby closing the handles.
Whereas the double-triangle loops originate from handle loops whose intersection
area decreases until it vanishes completely, when the segments cross the interstitial
point, they open up to the double-triangle loops with winding number W = −2.

Looking at all symmetries gives more insight into the nature of the topological
transitions taking place in a single symmetry, especially for the pure symmetries S6

or C6, in which some phases are missing.

3.2 Braiding with free octupoles

After studying the behaviour of a single free octupole subjected to an external,
driving field and a pattern field of given symmetry, the question arises, whether
non-trivial movements can be created with a pair or a bunch of free octupoles.

The phase diagram 3.10 gives insight to the number of stable positions throughout
the phase space. During experiments, the pattern symmetry is fixed at φ, leaving
just the external field as a control parameter. Complex movements can certainly
be performed on all patterns, transporting octupoles across a magnetic lattice in a
topologically protected way. In Löhr et al. (2017) individual transport was studied
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Figure 3.10: Phase diagram of paths topology and number of stable positions for free
octupoles, subjected to precessing C-loops (precession angle θ) and placed on magnetic
pattern of different symmetry. The symmetry parameter φ is zero for a C6 pattern and one
for a S6 pattern. The colours of one panel indicate different loop types, the brightness of
the upper half of each panel indicates the size of the area included inside the loop. Darker
colours correspond to larger areas. The purple panels correspond to the trivial basin loops
analogue to those in figure 3.2. The green colours correspond to the non-trivial double-
triangle loop and the triangle loop, winding twice (W = −2) around either interstitial
I1 or I2 in figure 3.3. Blue loops are handle loops, winding once (W = 1) around the
interstitial (compare bottom right of figure 3.9). They form a transition state between
the basin loop and the double-triangle loop. Yellow decodes the circular attractor loop
around the interstitial (compare bottom left of figure 3.9), only found for a S6 symmetric
pattern with a winding number of W = 1. The dots give the amount of stable positions
per unit cell. Each tile represents one combination of θ and φ. Mind, that neither axes is
split evenly, but the θ axis is split according to new transitions happening in one of the five
symmetry cases studied.

extensively using paramagnetic or diamagnetic spheres on a microscopic patterns.
All systems studied so far had in common, that only one minimum per unit cell can
be used to manipulate the probe particles. This results from the fact that during
one C-loop, covering all major regions of C, only one stable position remains. If the
pattern symmetry allows for a second minimum, the second minimum is irreversibly
emptied at some time during the driving C-loop. Here, one case is of special interest:
the previously studied C6 symmetric pattern. As discussed in section 3.1.2 two
octupoles can possibly be transported into individual directions.

In the following sections, this movement in individual directions will be discussed.
First, control C-loops, that allow the exchange of two octupoles will be developed.
Second, the exchange C-loops will be combined to allow more complex movements
with more than two octupoles.
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3.2 Braiding with free octupoles

3.2.1 Exchange loop

Without loss of generality we start with two octupoles a and b, sitting in the A and B
basin of one unit cell respectively. The aim is to end with these two octupoles being
exchanged in the same unit cell, i.e. in the final situation octupole a sits in basin B
and octupole b in basin A with no net displacement. Firstly, the necessary C-loops
are developed. Secondly, the resulting path data from the simulations is presented.

Such C-loops will certainly include external field C-loop segments in both, the north
(south) and tropics region of C. Furthermore, especially the relative positions of the
different octupoles is important. Reminding ourselves of the position of octupoles
relative to the external field phase in figures 3.2 and 3.3 gives the necessary information
to create exchange C-loops. Furthermore, section 3.1.2 showed, that a change of θ
will transport the octupoles radially according to the current value of ϕ. This will
be used to connect the C-loop segments of different precession angles and will no
longer be discussed separately.

As both free octupoles must not be in the same basin or interstitial at any time, we
need to make use of the third, empty basin for a successful exchange. The exchange
will then happen such that one octupole, e.g. b, goes via I1 into basin C. Then
the other octupole (a) can cross directly into the final basin B before the octupole
b can reach its final basin A. From figure 3.2 we conclude, that while octupole b
does the sidestepping move into basin C, a enters the interstitial I2. The paths have
to be designed such that a goes back into basin A, when b leaves I1 into basin C.
There are two waiting positions or turning points, where b could enter basin C. In
figure 3.3 (upper right) these are coloured red and yellow according to the external
field phase. Comparing this to the path around I2 shows that octupole a, leaving I2
at the red segment, ends in a basin B of a neighbouring unit cell. However, leaving
the interstitial on the yellow turning point, leads the particle a back into the basin
A. Hence, we need to leave the interstitials at the second, yellow, position in order
to keep octupole a, which is currently located on I2, in the original unit cell.

Combining C-loop segments in this way gives a toolbox to construct the whole loop,
the path in A, as desired. We are free to choose fields from one (the upper) or from
both hemisphere. For both choices an example loop is shown in figure 3.11. In the
upper half the external field always switches between both hemispheres, whereas the
lower part only uses fields in the northern hemisphere, but allows for a backwards
running field, making the total path shorter. Although both ways exchange the
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Figure 3.11: Two C-loops exchanging the free octupoles initially located in the north-west
of basins A and B. The paths of the loops are coloured corresponding to the phase of the
external field C-loop shown in the inset. In both cases, the octupole b (blue, starting in
B) sidesteps into basin C such that octupole a (black, starting in A) can cross via I1 into
basin B. In the upper case, fields in both hemispheres are used and the octupoles end up
with an effective orientation of π/2. Bringing the octupoles back to their original basins is
therefore only possible with an inverse field (starting in the south). In the bottom case,
only fields in one hemisphere (north) are used, their final orientation is the same as the
initial Φ(T ) = Φ(0). Bringing the octupoles back to their starting point is possible by
repeating the C-loop. After a second exchange, octupole b effectively surrounded octupole
a clockwise, making this exchange non-trivial. The octupoles’ orientation is indicated at
equally distanced times. To gain a better visibility, the paths of the octupoles b are plotted
slightly shifted and the paths of octupoles a are drawn slightly thicker .
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octupoles a and b, one difference remains. The second path is a closed C-loop, the
first C-loop ends in a point exactly opposite to the starting point of the driving field.
This explains the different orientations of the octupoles after the exchange.

If we now bring the free octupoles back into their original basin by exchanging them a
second time, we can effectively wind one octupole around the other. By applying the
same C-loop in the bottom case of figure 3.11 or a C-loop with an inverse field in the
top case leads to the same exchange movement as before. The bottom octupole (now
a) sidesteps into basin C to let octupole b cross back into basin B. This effectively is
a clockwise winding of octupole b around octupole a.

The phase of the orientation, accumulated by one octupole during such C-loops, differs
with different C-loop types. In the upper case, octupole a rotates by ∆Φ = −23/18π

and octupole b by ∆Φ = −13/18π. Bringing them back to their origin therefore leads
to an effective rotation of ∆Φ = −2π. In the bottom case of figure 3.11, octupole a
only rotates by 5/18π and b by 13/18π, leading to an total reorientation of ∆Φ = +π

after a full winding loop.

3.2.2 Braiding loop

After constructing and demonstrating the exchange loop of two octupoles, we want
to shuffle more than two octupoles in the action space. In this section the braiding
C-loop is motivated and constructed leading to a braiding group of free octupoles on
a C6 pattern.

As action space A is two dimensional, the winding of one octupole around the other
is a topologically non-trivial movement as introduced in section 2.2. Therefore,
braiding with free octupoles is possible and we can introduce a braiding group for the
octupoles. If we take only two octupoles and attach a virtual or real string on top
of the free octupoles, fixed at some point above the lattice, we have a macroscopic
configuration of the B2 group with the operators σ1, σ−11 and 1.

Adding a third free octupole a′ without loss of generality to another basin A introduces
more possibilities. Octupole b can either wind around the previous octupole a by
crossing over interstitial I1, or around the newly added octupole a′ by crossing I2.
This winding can be both either clockwise or counterclockwise. As the octupoles
a and a′ can not be exchanged, it is not a full B3 braiding group. We can create
a subgroup B⊕3 that only takes elements of B3 where the strings end in the same
positions as they start. The generators therefore are b̂1 = σ1σ1 and b̂2 = σ2σ2 where
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Figure 3.12: Three octupoles, marked black (a), blue (b) and brown (a′) are exchanged
on a C6 pattern. Octupole b is winding clockwise around a′. The pattern is indicated by
the potential landscape. Their preceding paths are indicated by coloured trajectories on
the potential. The more recent part of the trajectory is thicker, whilst the parts further
back in time are getting thinner until they vanish. Virtual strings connected to a fixed
plane above the pattern are attached to the octupoles. The evolving braid shows the past
exchange behaviour. b was winding around a and a′ in the following self repeating sequence:
1) clockwise around a′, 2) counter clockwise around a, 3) counter clockwise around a′, 4)
clockwise around a. This sequence effectively leads to a braiding of the three strings, as
indicated close to the fixed plane. The transformation from the winding of b around both
of the other strings towards the common braid is smooth. The movement of octupoles a
and a′ is always parallel as the octupoles a and a′ cannot change place. Winding of those
two octupoles is not possible and it depends on octupole b, which of the octupoles a or a′

is involved in the winding procedure. The black string is always in front of the brown one
after a smooth transition towards a braid.
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octupole b is either winding via I1 clockwise around a or via I2 clockwise around a′

respectively. The generators b̂1 and b̂2, together with the inverse, counter clockwise
winding generators b̂−11 , b̂−12 , and the unity generator 1 form a sub group of B3. The
subgroup still forms a non-abelian group as b̂1b̂2 6= b̂2b̂1.

Most commonly known as braiding is the braiding with three strings of e.g. hair
to a braid. Although this technique mostly involves exchanging all three strings at
some point in time, it is an element of B⊕3 . The same topology can be archived by
the following combination of winding the middle strand around one of the others:

b̂braid = b̂1 b̂
−1
2 b̂−11 b̂2 (3.1)

The octupole b is first winding clockwise around a′, then counter clockwise around
a, counter clockwise around a′ and clockwise around a. This is best seen with real
strings and trying it out on your own by just pulling the strings, especially the middle
string, after the winding procedure is finished. It is also shown in figure 3.12 and can
be understood by looking deeper into the process. The common braid is created by
taking the right above its neighbour into the center, then the left string above the
new center sting and so on. In the end string a is always placed on top of string b, b
always on top of a′, and a′ always on top of a. The two strands a and a′ effectively
never wind around each other and can be brought in a parallel configuration in which
b winds around both which is exactly the case we can simulate with our octupoles.
The braiding operation is sketched in figure 3.12.

Taking other generating C-loops will create other types of braids. Unless a generator
b̂1 or b̂2 is followed by its inverse, the braid saves the information about the generating
C-loop, as an unwinding is only possible by applying the appropriate inverse C-loop.

Depending on the C-loops creating the actual exchange, a different rotational phase
of the octupoles may be accumulated.

3.3 Locked octupoles

In section 2.5 a second type of octupole was introduced. Until now we only studied
the behaviour of free octupoles. In this section, simulations on the trajectories of
locked octupoles will be studied. The octupoles are locked to the projection of the
driving field Hext onto the action space, hence the azimuthal angle ϕ of the driving
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field. The relative angle between the octupoles orientation and the projection of the
external field is therefore fixed. According to the choice made in section 2.5, the
orientation of the octupole is

Φ(t) = ϕ(t) + γ + π/2. (3.2)

The change in orientation is therefore locked to the external field behaviour. Only the
position can adapt to find an energetically favourable position. A free octupole on the
other hand has its orientation as an extra degree of freedom. The minima that can
be found by a free octupole are therefore at least as energetically favourable as those
found by a locked octupole. The free octupoles’ minima are mostly energetically
way more favourable and the locked octupoles want to be as close to those minima
as possible. But their rotational locking doesn’t allow to follow these minima for
an infinite period of time. In a first approximation, for orientations Φlocked close to
those of a free octupole at the same position, the minimum is still attractive. After
a while however, the difference in orientations is too large and attraction can no
longer be guaranteed. The octupoles jump towards the next stable position, mostly
involving a ratchet. This is the driving mechanism for the path loops shown in the
following section.

The simulations are done using the forces and scripts described in chapter A. All data
shown here is calculated for an octupole with size r = 0.06a, which is in agreement
to the size of the octupoles used in the experiments in chapter 4. The random force
was set to zero to archive comparable results. The influence of the random force
was stronger than in the case of free octupoles according to the argument, that
the potential minima can never be deeper than in the free octupole’s case. Small
deviations from the perfect paramagnet-diamagnet ratio were found to have only a
small influence. However, larger deviations led to the same class of loops in A, found
for single paramagnetic or diamagnetic particles with slight deformations throughout
the path.

The results presented in this section are those of a perfectly balanced locked octupole,
δr and δχ introduced in chapter A are set to zero. The driving field C-loop is chosen
to be either a precessing C-loop or a orbital C-loop. Both types of driving the locked
octupoles are presented in this section.
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3.3.1 Path types for precessing fields

Analogous to the free octupoles, we start driving the locked octupoles with a
precessing external field. The octupole’s path loops, resulting from the simulations,
are presented and discussed in this section. The overall behaviour can be described
by slow segments close to stable positions of free octupoles that are connected by
fast segments generated by ratchets. Different locking angles of the locked octupole
lead to a different phase in a loop, that makes a certain basin stable. For each locked
octupole, a certain but differing segment of the free octupole’s path is stable. Based
on these argument we can understand the simulated paths presented figures 3.13 and
3.14.

For small precession angles, the stable positions of the free octupoles are always
very close to the center of the blue basins as shown in figure 3.2. Changing the
octupoles orientation by rotating the external field forces the locked octupoles to
jump to the next basin after ϕ(t) = π/3. A different locking angle only leads to a
different starting basin in an external field C-loop. This is a consequence from the
proximity of the stable free octupole positions for different external field phases ϕ.

For larger precession angles, the stable positions of locked octupoles with different
locking angle are no longer close to each other and no longer in the center of the
basins. This can be explained by the larger basin loops exhibited by free octupoles.
Depending on the locking angle, the stable positions of locked octupoles are therefore
further out, at the edge of some basin. In a certain basin, these stable positions
can now be either closer to the large, inaccessible region I0 or closer to one of the
interstitials I1, I2. This proximity to either I0 or I1, I2 creates two types of paths,
that are shown in figures 3.13 and 3.14. The first path type, the flower, encircles a
large area including even large parts of the basin areas. The second type, the star,
is characterized by rather sharp tips and a smaller included area.

The flower is created by locked octupoles, that have their stable positions close to
some I0 region. All locked octupoles follow the free octupole path for some while,
until it is energetically unfavourable. Due to their sense of rotation, the closest stable
position belongs to a basin adjacent not to the same, but a neighbouring I0 region.
This spans a very large path encircling up to a whole unit cell.

The star shape however is created by all other locked octupoles. Two different
chiralities of those star paths exist as shown in figure 3.14. If the stable segment
leads the locked octupoles back towards I0, the subsequent fast segment brings the
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Figure 3.13: Paths of locked octupoles for different precession angles θ. All locked
octupoles have a locking angle of γ = 105°. The driving is in a positive sense. The locked
octupoles for θ = 10° (upper left) are sitting in the center of one of the basins A, B or C,
where the free octupoles would remain, until they jump to an adjacent basin with better
fitting orientation. Depending on the stable position of the free octupoles in the basin, the
shape changes. For larger precession angles, the shape can either be more like a flower
and include the basins (upper right) or more like a star (lower right). The path in the
lower left shows a Sisyphus phase, with adiabatic moves from one of the interstitials
towards the central I0 followed by clear ratchet jumps to an adjacent interstitial. In this
case (lower left) the shape depends on the driving direction. The stable path segments can
either be connected to a star (positive driving, shown here in the lower left) or a flower
(negative driving, not shown here) including the basins. Inverting the driving direction
does not change the path’s shape in the top cases and the bottom right case. The paths are
coloured according to the phase of the external field as indicated in the inset. The drawn
data points from the simulations are evenly distanced in time.
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3.3 Locked octupoles

Figure 3.14: Paths of locked octupoles with different locking angles γ for a driving field
along the equator. Two shape types, the flower (upper left) and the star (others) are
found depending on the value of γ. For γ = 45° perfect agreement with the free octupole’s
position is found at certain times. The star path is symmetric in that case (lower left).
For other cases, a slight asymmetry is found (right). The octupoles either approach a tip
of the star with a ratchet (upper right) or leave the tip with a ratchet (lower right),
leading to two different chiralities. Furthermore, the phase of a locked octupole in its path
can differ as seen by the position of e.g. the red coloured segment of the paths. A phase
shift of π in A relates octupoles with perpendicular orientations. The transition from a star
to a flower happens via the driving direction dependent Sisyphus loop, shown in figure 3.13
in the lower left. The paths are coloured according to the phase of the external field as
indicated in the inset.
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octupoles to the next tip of the star. Otherwise the fast segments starts at the tip
and brings the octupole to the next basin. This difference can be seen in figure 3.14
and leads to the two different chiralities of the shape of such paths.

Turning the direction of the driving field will mostly not change the chirality, as it
is defined by the stable segments. Even the shape seems to agree in great detail in
both driving directions. This indicates that the fast segments can not be a ratchet
transition. However, the shape of the loop has no information on time and only
with the time information that conclusion can be made. Only close to the transition
between a star and a flower, the strong ratchet, connecting the adiabatic segments of
the Sisyphus phase, is dependent on the driving direction. Changing the direction
of the driving field switches between a star and a flower in the Sisyphus phase. In
the bottom of figure 3.13, the Sisyphus phase is shown in the star shape.

Unlike in the case of free octupoles, for precessing fields close to the equator, no
transition towards topologically different path types occurs. The stable path segments,
and thereby the tips of the stars, are merely shifted towards the interstitials. Only
for θ = 90°, a star without any chirality exists for the special values of γ, matching
the orientation of a free octupole at the tip of the triangular, non-trivial loop shown
in figure 3.3.

A precession on the southern hemisphere leads to a change of the path’s chirality.
Analogue to pushing the tips of the star closer to the interstitial by approaching the
equator, these stable positions are being pushed further into the next basin when
crossing the equator. This is in agreement with the orbital transport loops shown
in figure 3.6. When the stable segment was leading the octupole towards some I0
region before crossing the equator of C, the stable segment now leads the octupole
away from I0 and the path loop has the opposite chirality.

The shape retrieved from small precession angles (upper left in figure 3.13) is somehow
an intermediate shape, transforming a star smoothly into a flower, as the basins are
neither included nor excluded by the loop. Therefore a transition between a star and
a flower either goes via these intermediate star/flower shapes or via driving direction
dependent ratchets in the Sisyphus phase, shown in the bottom left of figure 3.13.

An overview over the occurring path types as well as their chiralities and orientations
relative to the central I0 is shown in figure 3.15. Starting from indistinguishable
shapes at low precession angles, a splitting into two types occurs. The symmetries of
the system can nicely be observed. An external field H ′

ext(t), that is the mirror image
of Hext(t) with respect to the x-y-plane leads to the same path’s shape as Hext,

56



3.3 Locked octupoles

Figure 3.15: Phase diagram of the path types of locked octupoles shown in figures 3.13 and
3.14. The octupoles are locked to the external field with a locking angle of γ and driven by
a precession C-loop with precession angle θ. Each combination of θ and γ is represented by
one panel in the diagram. The shape is colour coded, with purple indicating the flower and
yellow indicating the star. Darker colours represent larger included areas of the paths. The
chirality is indicated by the chiral star, depicted either in the left corner (stable segments
lead the octupoles away from I0) or right corner respectively. The stars with narrow tips
indicate a stronger chirality. The red circles mark the positions of vanishing chirality. The
arrows in the bottom of each panel indicate the position of an octupole for ϕ(t) = 0 relative
to the encircled I0 region. The direction of the arrow either depicts the basin, to which the
stable segment belongs or (some cases in θ = 90° and 10°) the closest interstitial. At some
constellations of θ and γ, transitions occur and depending on the direction of the driving
field, the outcome differs in shape and or direction, indicated by a split panel. Counter
clockwise field C-loops always correspond to the right side of the split panel.

if the locking angle of the octupole is shifted by π/2. When mirroring the driving
field and rotating the locked octupole by π/2, only the loop’s phase in the action
space A differs by π, in agreement with the results of section 3.1.1. This symmetry
accounts even at the equator. Taking the inverse of the driving field together with
a orientation shift of ∆Φ = π/2 is therefore a symmetry of the system, leaving the
path invariant.

The general behaviour of such locked octupole loops is a path running around one I0.
This behaviour seems to be similar to the behaviour of paramagnets or diamagnets at
a first glance. The huge difference is, that for para- and diamagnets I0 is accessible
and their path loop can easily be contracted, such that they sit on the center of the
central magnet for a driving field parallel (paramagnet) or anti parallel (diamagnet)
to its magnetisation. The locked octupoles cannot go deep into the I0 region and
always have a winding number of W = 1 around I0. Apart from that they can be
distinguished by the amount of path in the basin region, which is inaccessible to
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both, para- and diamagnets. Finally, the flower is a behaviour not known for simple
C-loops for neither para- nor diamagnet.

3.3.2 Sorting with polar orbits

Apart from precessing fields, we further study the behaviour of locked octupoles
driven by a polar orbiting field. The resulting trajectories from the simulations on
systems with different locking angles and different driving C-loops are presented in
this section.

In section 3.1.2 the transport of free octupoles driven by a polar orbit of varying
azimuthal angle ϕ is studied. Their orientation changes only slightly during the
individual C-loops, such that an octupole starting in B is always approximately
oriented like an octupole, that remains in B. The locked octupoles do not only stay
approximately oriented during a polar orbit, but stay perfectly oriented. Therefore,
most of the trajectories and path shapes of free octupoles can, up to slight deforma-
tions, be reproduced with locked octupoles and will not be shown here. However,
in the free octupole’s system, discussed in section 3.1.2, octupoles starting in some
basin, e.g. A, would relax irreversibly into another basin, when running into I0. A
ratchet transition and a reorientation brought them into a new basin and back on
a stable track. This is no longer possible with locked octupoles, as they must not
change their orientation.

A locked octupole will end in a basin that is determined by its relative orientation γ
and by the azimuthal angle ϕ of the driving C-loop. Returning the C-loop to the
north pole forces the locked octupole into the best fitting basin, which depends on
the octupoles locked orientation. The variation of the final basin with the orientation
of the octupole can be used to effectively sort the locked octupoles by their locking
angle γ. Starting at one basin, e.g. A, will lead different octupoles into different final
basins. This is shown in figure 3.16. Apart from the basin, even the direction of
motion varies between different locking angles, such that a sorting with one orbital
C-loop into six particle classes is possible. Although only a range of ∆ϕ = 110° is
shown, a continuation of the diagram as well as different starting basins is possible
for symmetry reasons.

The sorting itself happens via ratchets, that are quite robust if the external field
direction is not aligned with some high symmetry direction of the pattern. This
is analogue to the free octupole’s case of section 3.1.2, where the transition of the
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Figure 3.16: Phase diagram showing the final basins for locked octupoles subjected to a
polar orbit. The octupoles all start in basin A. According to their locking angle γ and the
driving azimuthal angle ϕ, the octupole ends in a different basin indicated by the colour of
the panels. Furthermore, depending on the locking angle, the direction of the displacement
varies as indicated by the arrows and the corresponding background pattern for better
visibility. One arrow depicts one primitive lattice vector relating the centres of the unit
cells before and after one C-loop. The unit cells are centred around the interstitial I1. Each
tiny panel corresponds to one locking angle and one azimuthal angle, both are varied in
steps of 10°.

direction of the first ratchet emptying the unstable basin changes at multiples of 60°
for fields aligned with the primitive lattice vectors. A comparison of the transition
inbetween the individual loops is shown in figure 3.6.

As the direction of sorting and the end basin vary smoothly with the azimuthal angle,
one can imagine that an arbitrary combination of orbital C-loops can sort the locked
octupoles placed in some fixed starting basins according to ones desires. By avoiding
azimuthal angles that are multiples of π/3, the sorting is stable and reliable results
can be expected.
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After studying the theoretical expectations for topologically protected transport of
induced octupoles placed on a magnetic pattern in an external, driving field, this
section covers the experimental realization of such systems.

The usage of high temperature superconductors (type-II-superconductors) in the
construction of the octupoles leads to a pinning of magnetic flux quanta penetrating
the superconducting phase. This effectively freezes the current state of the magnetic
field into the superconductor and can be used for impressive effects like magnetic
levitation (Brandt, 1990). The direction of the flux quanta is imposed by the external
field direction inside the sample in the moment of the conductor-superconductor
transition.

The pinning itself is quite strong compared to other torques in the system, leading
to a composite particle, a locked octupole, that always aligns in the same orientation
according to the magnetic field. As the external field is by choice strong compared
to the pattern field, the alignment occurs with regard to the external field direction.

Therefore, an octupole consisting of two type-II-superconductors and two paramag-
netic particles is supposed to behave like a locked octupole as described in section 2.5.
A type-I-superconductor on the other hand can be used to create a free octupole, as
the superconductors are perfect diamagnets due to the Meissner–Ochsenfeld effect.
Unfortunately, the lab equipment of the Fischer group in Bayreuth does not allow
for experiments at liquid helium temperatures. Hence we can’t study free octupoles
experimentally.

In this chapter, only experiments on composite particles using type-II-superconductors,
therefore possibly locked octupoles, are presented.
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Magnet Diameter Height µ0M
Pattern, center 3 mm 2 mm 1.19 T
Pattern, corners 2 mm 2 mm 1.35 T
External field 60 mm 10 mm 1.28 T

Table 4.1: Dimensions and magnetizations of the NdB-magnets used in the experimental
setup. The integral of the magnetization over one unit cell vanishes.

4.1 Setup and implementation

4.1.1 Goniometer

The experiments were done on the macroscopic scale, using the goniometer already
used for the experiments shown in Rossi et al. (2017). The setup can be seen in
figure 4.1. The goniometer consists of a ring, a sled and the sample holder. The ring
can rotate 360° around its support structure. The sled, mounted on the ring, can
almost rotate full 360°, limited by the supporting axis of the ring. All supporting
parts are build from non-magnetic materials (aluminium, brass, polymers) to avoid
disturbances of the magnetic fields needed in the experiments.

A pair of large NdB-magnets is mounted on the sled, freely rotating along the ring
and around the pattern. By rotating these magnets, the direction of the external,
driving field Hext can be adjusted to induce transport of the probe particles. The
magnetization of the magnet is given in table 4.1.

In the center of the goniometer, the magnetic pattern is located. It is built from
cylindrical NdB-magnets with two different diameters. The magnetisation of the
larger magnets points upwards. The orientation of the smaller magnets points
downwards. The resulting pattern is shown on the left side in figure 3.1 and in the 3D
representation in figure 4.2. The magnetizations are chosen such that the magnetic
moment of one unit cell vanishes. The magnetizations are listed in table 4.1. The
pattern is energetically not in the ground state as the individual magnets would
rather align in a long stick with their dipole along the stick’s axis. However, without
any external field, the pattern is metastable. To ensure mechanical stability even
inside the external field, the magnets are glued with epoxy into a sample holder.

The experiments can be captured by a camera not shown in the schematic images. It
is mounted at the sample holder giving a top view of the probe chamber. Furthermore,
the pattern used in most experiments was one consisting of a few unit cells. Only
seven full unit cells were accessible. The probe particle is placed in the center to
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Figure 4.1: Schematic 3D representation of the goniometer. The large magnets producing
the external field sit in a sled that can rotate along an aluminium ring. The transparent probe
chamber above the sample holder is filled with liquid nitrogen to cool the superconductors.
The sliding bed and the bearing at the supporting axis allow the external field to point
in almost all directions. Only the areas close to the poles have to be omitted due to the
bearing of the ring.

ensure approximate periodicity in all directions. The external magnets are turned
slowly around the probe, such that the particles can follow the potential adiabatically.

Data of the octupole trajectories are obtained from the digital videos using manual
tracking procedures.

4.1.2 Probe chamber

In the center of the goniometer, above the magnetic pattern, a small chamber is
placed as seen in figure 4.2. Its main purpose is to contain the probe particles and the
liquid nitrogen, used to cool the system to 77 K. The bottom is a plane, transparent
disc. On top of this disk a ring with a height of 15 mm is glued to prevent leaks.

To ensure the universal height, some transparent spacers are placed in between the
pattern and the probe chamber. The heat transfer should be minimized to avoid
boiling of the liquid nitrogen. Therefore the spacers are rings, only touching the
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Figure 4.2: Schematic 3D representation of the probe chamber and adjacent parts sitting in
the center of the goniometer shown in figure 4.1. On the bottom plate of the probe chamber,
the octupole is placed. The inset shows the octupole consisting of two superconducting
spheres, two deformed magnetite-wax-spheres and glue in the center. The spacer adjusts
the distance to the pattern to guarantee the universal height. The magnetic pattern consists
of individual magnets magnetized up (gold) and down (silver) respectively. The magnets
are glued into a sample holder for mechanical stability.

outside of the probe chamber and leaving an isolating gap of air in between the
surface of the pattern and the probe chamber.

Before placing the probe particles, the chamber is filled with liquid nitrogen until
the boiling stops and disturbing convections in the fluid cease.

4.1.3 Octupole particles

To assemble locked octupoles, two paramagnetic and two diamagnetic particles of
similar susceptibility are needed. The range of susceptibilities of diamagnets is
limited. The minimal diamagnetic susceptibility is χsuperconductor = −1 and hence a
high temperature yttrium barium copper oxide (YBCO) superconductor is chosen.
YBCO is a type-II-superconductor, therefore its susceptibility depends on both,
temperature and external field. The field strength in the goniometer is 45 mT and
the temperature is that of liquid nitrogen. The susceptibility can be estimated
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Name 3:1 6:1 10:1 20:1
Wax in g 0.502 0.500 0.501 0.503
Magnetite in g 0.106 0.080 0.051 0.027

Table 4.2: Different mixtures of bee’s wax and magnetite used in the experiments to form
paramagnetic spheres. The name refers to the approximate mass ratio.

around χYCBO ≈ −0.8 (Chen et al., 1990) in this setup. The forces are calculated
using the effective susceptibility taking the geometry of the spherical particles that
build up the octupole, into account. For a sphere this yields:

χeff =
χ

1 + χ1
3

(4.1)

These effective values have to be balanced in order to build an octupole with vanishing
dipolar contributions. With χeff

YCBO ≈ −1.1 the paramagnetic material should have
χeff
paramagnet ≈ +1.1 and therefore χparamagnet ≈ +1.7.

To get a fitting paramagnetic material, magnetite powder from Sigma-Aldrich (Sigma-
Aldrich, 2019) is mixed with non magnetic bees’ wax by melting the wax and stirring
until the wax/magnetite blend solidifies. The susceptibility of magnetite is in the
range of χmagnetite ≈ 1 − 5.6 (Hunt et al., 1995). A volume ratio of about 5/1 wax
to magnetite should therefore give results in the right order of magnitude. Taking
the different densities (ρmagnetite ≈ 5 kg l−1) into account, this crude estimation
gives a mass factor of about 1/1. However, first experiments showed, that a lower
percentage of magnetite is working better. To find an octupole, where para- and
diamagnetic contributions are balanced, the percentage of magnetite is varied and
different samples, summarized in table 4.2, are produced. The susceptibility of
this composite wax-magnetite material was measured for the 3:1 wax-magnetite
mixture in a magnetometer, using a spherical sample holder of diameter 5 mm. The
result itself shows a small hysteresis. As only small fields are used, the hysteresis is
neglected. A crude fit gives an effective susceptibility of χeff

3:1 mixture(3:1) = 0.4 in this
approximation.

The superconducting spheres have a diameter of 1 mm. Spheres of the magnetite
material of the same diameters are formed by rolling small amounts of the soft
material between two glass slides using steel spheres of the same diameter as spacers
to guarantee a compatibility of the sizes.

In a final step, two superconducting spheres and two paramagnetic magnetite-wax
spheres are glued together in a lucky clover arrangement. Easiest handling is
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archived, when the superconductors are glued permanently and pressing the plastic
wax material on both sides of this doublet as shown in the inset of figure 4.2. This
leads to a slight deformation of the magnetite spheres.

The octupole particles are aligned at different angles γ towards the external field
directions before placing them into the liquid nitrogen. Therefore, the external field
direction is frozen into the superconductors at the specific angle of γ. Changing
the locking angle during a measurement is possible by rotating the octupole with
tweezers and holding them until the flux quanta relax to the new field direction after
a couple of seconds.

The locking was examined on both, an empty sample and a C6 pattern. The octupoles
followed the external field in both cases such that after a full rotation of the external
field along the equator of C, the octupoles end with the same locking angles. This
behaviour did not depend on the magnetite concentration in the range described in
table 4.2.

The locking works only if the external field is not changing its precession angle θ.
Changing θ during a C-loop would lead to an erected octupole not laying flat on the
probe chamber any more. Furthermore, only fields close to the equator result in
reliable locking as the horizontal fraction of the external field decreases closer to the
poles.

4.1.4 Precessing external fields

The paths of several octupoles as described in section 4.1.3 with varying paramagnetic
strength and locking angles were recorded, tracked and analysed. The range of
materials is analogue to the list of mixtures shown in table 4.2. Locking angles were
varied in steps of 15°, the error is of similar magnitude. The magnetic field was only
rotated along the equator. A constant tapping on the sample holder was applied to
prevent sticking of the probe particles to the probe chamber.

Most of the octupoles run in a circle around one of the golden magnets. Therefore,
comparison to paramagnetic and diamagnetic probe particles is necessary. This was
done using single paramagnetic particles, single superconducting spheres, doublets
of two diamagnets or two paramagnets and a fake octupole consisting of two super-
conductors and two non-magnetic wax spheres. The fake octupole shows the same
hydrodynamic interaction and differs only in magnetite content, making it easily
comparable with the octupoles.
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The orientation, as well as the change of the external field for composite particles
containing more than one superconductor can be extracted from the videos by
tracking both superconductors individually. At the beginning of each video, the
direction of the external field was indicated by a cord crossing the cameras view.
The cord spans perpendicular to the external field.

4.2 Results for locked octupoles

Locked octupoles of different strength and dipole particles were studied with a
precessing field in the equator of C, as described in section 4.1.4. The results for
some of them are shown in figure 4.3.

Stable paths similar to theoretically predicted locked octupole paths were obtained
with the 10:1 mixture of wax and magnetite. The corresponding octupoles are named
OP10 in the plots. The paths of octupoles with lower magnetite concentration (20:1)
were more unstable and behaved more similar to a diamagnetic single particle. Higher
concentrations led to a behaviour close to those of paramagnetic dipole particles. In
the case of a 6:1 mixture, the resulting paths were still quite unstable. The following
results are presented for the 10:1 mixture (see table 4.2).

The two different path shapes, the flower and the star, described in section 3.3 were
found. The tips of the star are not detectable due to large noise, generated by the
boiling liquid nitrogen. An example of a star is shown in the upper left of figure 4.3.
The bottom left of this figure shows a segment of a flower path, where the octupole
encircles the central golden magnet with a large radius and without ever getting
close to the magnet itself. The agreement of the experimental path shapes with the
theoretical paths is quite good, the locking angles however do not exactly fit the
expectations. Nevertheless, uncertainties in adjusting the locking angles are large
enough to cover the disagreement. Furthermore, the balance of susceptibilities might
not be perfect. Composite particles with unbalanced effective susceptibilities, thus
octupoles with a non-vanishing dipole character, in simulation show path shapes
more similar to pure paramagnets or diamagnets with slight deformations. The
experimental data clearly deviates from dipole paths.

As the star shaped path is effectively reduced to a circle in most cases (compare
figure 4.3 upper right), the speed throughout the path has to be studied to see the
main difference to a dipole particle. The paths in figure 4.3 are coloured according to
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Figure 4.3: The experimental paths for octupoles (OP10) with a 10:1 mixture of wax
and magnetite in the paramagnetic spheres and a fake octupole (OPFAKE) having no
magnetite content in the wax spheres. The paths are coloured with their speed relative to
the change of the magnetic field. A clear correlation between the position and speed can
be seen for the octupoles (upper row and lower left). The octupole with γ = 75° (top
left) shows a path with clear waiting positions at the interstitials. The octupole γ = 60°
(bottom left) moves on a segment of a flower path, encircling the center magnet. The
fake octupole (bottom right) shows the same behaviour as diamagnetic spheres. The
background images are taken from the respective videos, showing the pattern and the probe
particles at the end of the tracked path.

their current speed, normalized by the change of the external field. The normalization
was necessary to adapt for different driving speeds throughout one, or in between
different data sets. The data of one exemplary octupole is shown in figure 4.4. Clear
minima separated by quite high maxima can be found. The minima correspond to
the positions the tips of the stars are located and are in good agreement with the
pattern (shown in the background of each plot in figure 4.3). The maxima are the
ratchet jumps of one tip-position to another.
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Figure 4.4: Measured speed of a locked octupole (OP10, γ = 75°) relative to the external
field change. Six minima and six maxima, with the maxima corresponding to the ratchet
transitions, are visible. The path data in the action space of this measurement is shown in
the upper left of figure 4.3.

The dipole composite particles show a different behaviour where either no significant
change in speed can be detected, as seen in the example in the bottom right of
figure 4.3, or no correlation to the external field’s phase or the position can be
detected. This might lead to more than six minima or maxima.

Furthermore, the alignment of the external field’s phase to the loop’s phase, assigned
to the probe particle’s position in one loop, is quite characterizing the composite
particle types. In the case of dipole particles, this phase is independent of e.g. the
locking angle and their loops, hence their paths in A are quite stable. Paramagnets
and diamagnets sit on opposing positions above the golden, central magnet, aligned
with the external field’s direction. In the case of locked octupoles, this position can
change with the locking γ, as shown in section 3.3. The experimental data of the
loop’s phase is colour coded in figure 4.5. For an octupole with locking angle of
γ = 30° (left of figure 4.5), the starting position differs strongly from the positions of
dia- or paramagnets like it can be seen for the fake octupole shown on the right side
of figure 4.5. Neither path shape nor phase changes dramatically with the locking
angle of the fake octupole.

The stability of the observed paths depends strongly on the used probe particle types.
Whereas all types of dipole particles followed their tracks repeatable and almost
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Figure 4.5: left: The experimental paths for an octupole (OP10) with a 10:1 mixture in
the paramagnetic spheres and right: a fake octupole (OPFAKE), having no magnetite
content in the wax spheres. The paths are coloured according to the phase of the external
field rendering this position. The fake octupole (right) behaves exactly like a diamagnet, the
octupole (left) with γ = 30° has a loop’s phase differing about π/3 from a dipole particle.

independent on the rotation speed of the external, driving field, the octupoles show
different paths depending strongly on the driving speed. This is not unexpected,
as the simulation showed a great impact of ratchet transitions for locked octupoles.
The octupoles rather easily escaped from their starting unit cell like it can be seen in
the top left octupole in figures 4.3. Generally the octupoles invaded deeper into the
interstitial regions, the area outside the large magnet, than dipole particles. They
even entered the space in between the smaller magnets, that is not accessible to any
dipole particle at an arbitrary external field.

In conclusion, the observed octupoles show the different path shapes predicted by
the simulation data for locked octupoles, a higher instability than dipole particles,
different phases inside one loop in action space for different locking angles, and a
clearly non-uniform speed throughout one field C-loop. This gives reasons that the
composite particles, built from type-II-superconductors and magnetite-wax-spheres
in the right ratio of magnetite to wax, indeed show the behaviour of locked octupoles
as predicted by the simulations.
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In this thesis, the topological protected transport of induced magnetic octupoles
on a magnetic pattern was studied. The position in the 2D action space and the
orientation of an octupole are three degrees of freedom. Octupoles that were free
to rotate, free octupoles, show a complex topology of paths, when subjected to an
external field C-loop. On patterns with C6 symmetry, the path topology was found
to be equivalent to saddle points of a single particle potential. Octupoles without
this degree of freedom, locked octupoles, show some interesting behaviour in polar
orbital fields and were studied in experiments and in simulation. Several sharp
transitions were found in the systems. Deeper insights and possible explanations
could be presented by observing the transitions under varying parameters.

5.1 Summary of particle types and their behaviour

The two types of studied particles, free and locked octupoles, show a quite different
behaviour when subjected to an external, driving field and placed on a magnetic
pattern. The trajectories of both particle types, subjected to different driving
field C-loops, were retrieved by simulations. Locked octupoles were further studied
experimentally.

The simulation results of free octupoles on a C6 pattern show two different loop
types. For a precessing field close to the poles of C, trivial loops in action space,
that can be contracted to a point, exist. Those basin loops grow in size until the
octupoles can not follow them any more. A topological transition happens close to
the equator of C, leading to a non-trivial double-triangle loop around the interstitials.
On such double-triangle loops the octupoles move around an interstitial point twice
per external field C-loop in the direction opposing the direction of the driving field.
The interstitial point itself can not be reached by the octupoles. The orientation
rotates by π during such C-loops. The path is shaped like a triangle at the equator.
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Each segment splits into two for field C-loops that deviate slightly from the equator
of C giving rise to the double-triangle shape.

The transition from basin loops to double-triangle loops is better understood by
examining the system with varying pattern symmetries. A pattern with a symmetry
slightly varying from a perfect C6 pattern shows a third loop type, a handle loop
occurring at the transition from basin loops to double-triangle loops. The handle
loop originates from segments of the basin loops of different basins. The basin loops
grow in size with larger precession angles θ until parts of different basin loops connect
to form one large triangle around the interstitial, the handle loop. At each corner
of this loop the octupoles run in a small handle, as they try to follow the basin
loop until a ratchet leads them to the next segment of an adjacent basin. A second
transition transforms the handle loop into a double-triangle loop: the former basin
loop segments grow even further in size until the ratchets connecting them cross on
the other side of the interstitial point, leading to a free octupole effectively running
twice around the interstitial. The closer the pattern symmetry gets to a S6 pattern
the broader is the range of precession angles where this handle loop is found. For a
pure S6 case, the handles of the handle loop vanish. One large attractor loop leads
the octupoles around the remaining interstitial. The size of this loop decreases with
larger precession angles until the attractor loop is contracted to a point and only
one rotating octupole remains per unit cell.

This point of view further explains the speed of the free octupoles throughout one
cycle. The high velocities found on the inner segments of the non-trivial double-
triangle loops are inherited from the ratchet transitions connecting the stable parts of
the handle loop. By looking at other symmetry cases, deep insight into the transition
of the two topologically distinct loop types, found at the C6 level is gained.

It was further shown that two free octupoles, sitting in one unit cell, can be exchanged
with a complex driving C-loop. This exchanges are generators of a braiding group,
shown to be a subgroup of the B3. By taking three free octupoles, real braiding is
possible, giving rise to another field where topology is applied in physics, as described
in the introduction. With strings attached to the octupoles, the state after winding
one octupole around the other is topologically different. This is a particle model of the
idea to use non-abelian anyons in quantum computation. Braiding in 2D is of course
possible for all types of particles, with attached virtual or real strings. The basic and
important difference is, that two identical particles are manipulated by the external
field C-loop that allows for a winding around each other. The possibility to braid
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5.1 Summary of particle types and their behaviour

with free octupoles makes them a fascinating analogue to anyonic quasi-particles
used in quantum computation.

When enslaving the rotational degree of freedom to the external field, a second
type of octupole, the locked octupole, is gained. The path behaviour received from
simulation data can best be understood by comparing segments of paths of locked
octupoles with segments of paths of free octupoles. The minima of free octupoles
are energetically more favourable due to their extra degree of freedom. Hence, the
locked octupoles follow those positions until their orientation makes the position
unfavourable and a ratchet brings them to the next stable position.

The basic simulated paths of locked octupoles were found to have the shape of a star
and a flower. Both, the star loop and the flower loop lead the octupoles once around
a centred I0 region. The star loop excludes most of the basins’ area. The tips of
the star are connected with ratchets. Depending on the location of the adiabatic
segment, two chiralities exist. An octupole on a flower loop encircles a larger area
including most of the basins’ area. At a certain precessing field, it depends on the
locking angle γ of the locked octupole, which path it will follow. For precession
angles close to the poles of C, both types converge into each other. Observing the
behaviour for smaller precession angles therefore helps to understand the different
path types of octupoles with different locking angles at a precessing field close to the
equator of C.

A very interesting observation was made for polar orbiting field C-loops. Placing
locked octupoles on one fixed point in the action space leads to at least six different
final locations after one sorting C-loop. The outcome depends on the locking angle
γ of the octupoles and the azimuthal angle ϕ of the driving field. Combining such
C-loops might be an interesting application for sorting locked octupoles in a robust
way.

The locked octupoles were further studied in experiments showing the principle
structures predicted from the simulations. Although the balance of the materials
involved in building these complex composite particles is not perfect, clear signs
indicate that the experimental locked octupoles do not behave like pure dipolar
particles. Both theoretically predicted path shapes, the flower and the star, could
be observed experimentally. The speed throughout one loop shows a ratchet type
transition and some locked octupoles start at a different position at the same external
field, as predicted for locked octupoles with different locking angles. The created
composite particles, made from type-II-superconductors and magnetite-wax-spheres
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5 Conclusion

are therefore assumed to be locked octupoles. The flux quanta of the type-II-
superconductors guaranteed the locking of the octupoles’ rotation to the external
field direction.

5.2 Outlook

The experiments show reasonable agreement with theoretical locked octupoles. Fur-
ther experiments should be done to proof the agreement using different concentrations
of magnetite-wax spheres. A larger pattern, containing more unit cells, could help
to improve the paths stability and to study the sorting C-loops described in the
simulations.

A next step would be to create free octupoles. In the same system, this could be
archived by pyrolytic graphite in wax, although the relevant forces could be orders to
small to compete with noise. Löhr et al. (2016) used a colloidal microscopic model
for the experiments on paramagnets and diamagnets. By filling the sample with a
ferrofluid, a non-magnetic colloidal particle acts as a hole in the highly paramagnetic
liquid and is therefore an effective diamagnet of high susceptibility. In this setup,
free octupoles could be created by glueing two paramagnetic colloids and two non-
magnetic colloids in a lucky clover arrangement. The glueing could be archived by
using complementary DNA strands.
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A Programs in Python

A.1 Version, packages, and scripts

All the simulations and the data processing was done in the scripting language
python (version 3.6). To speed up the simulations, the jitclass of numba was
used for several classes, which compiles python before running it. The package
numpy was used for most calculations and data handling. Plotting was done with
mathplotlib.pyplot. All scripts are build up from scratch.

The simulations are Brownian single particle simulations, meaning there is no
interaction between two particles of any type. The randomness of the Brownian
motion, as well as step size dt and speed of the introduced external field are adjusted
to reduce numerical problems in the data and ensure adiabatic transport and still
having a reasonable computation time for each simulation. The particles follow the
potential minima adiabatically if the physics allows for it, leading to reproducible
results. Each time step is executed as follows:

xi+1 = xi + F ext dt+ f (A.1)

with F ext being the external force on the particle and f a scalable random force.

The most important scripts are mentioned and shortly described here:

potential.py provides mainly the class OctupolePotential(). This class is the
backbone of all the calculations. Based on the external field this class gives
the potential and forces of a free, as well as a locked octupole, or the simple
gradient of the paramagnetic, universal potential U . The class is optimized
as a jitclass. The python file furthermore provides some functions to find
minima of the octupole potential.

timestep.py introduces the jitclass timestep(), as well as classes for all particle
types. With timestep() one can either propagate one particle for one step
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A Programs in Python

or simulate a full loop of some given external field. It uses some constants
for step size and for the strength of the random Brownian contribution. The
particle classes provide simple functions as getting or changing the current
position and orientation. The main difference of these classes is the way the
force acting on them is defined. Only the Saddleseeker() class could not be
optimized as a jitclass, because it is not really simulating a force acting on
the particle, but searches for the closest saddle point by finding the roots of
the potential. This root finding is done with fsolve from scipy.optimize. It
needs an unoptimized timestep() class to run. Apart from these classes some
functions to generate the external magnetic field are provided by this script.

plotting.py provides all functions often used in the plots. 3D plots are implemented
with the package mpl_toolkits.mplot3d.

animation3x.py is the script running a live simulation of a given set of particles. It
simulates and animates the paths of all particles to a given external field loop
and gives the option to save videos or path data.

plotpath_*.py are files used to make action space plots out of saved path data,
depending on the given data structure several of these files exist.

other files are scripts for individual problems and need no further description.

All programms were run on a Windows 10 computer using the Spyder 3.2.8 environ-
ment for debugging and data analysis. Paths data is saved as *.dat files.

A.2 Particle forces

The forces of the individual particles are derived as follows

Paramagnet The force is the gradient of the universal potential U (equation 2.5),
as a paramagnet tries to maximize the potential.

F p = ∇U (A.2)

Diamagnet The force is, except for the inverse direction, the same as for a param-
agnet.

F d = −∇U (A.3)
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A.2 Particle forces

Free octupole Using equation 2.15 and taking the 2D gradient gives the force on a
free octupole. The constant factor r2 of equation 2.15 is set to 1 for simplicity.

F free = −∇
√

(Uxx − Uyy)2 + 4U2
xy (A.4)

Locked octupole According to equation 2.19 the forces of the four dia- or para-
magnetic particles are summed up. To introduce the possibility of changing
the ratio of the distance or χ of the two particle types two further variables
are introduced. With rp = r + δr and rd = r − δr as well as χp = 1− δχ and
χd = −1− δχ.

F locked = (1− δχ) (F p(x + (r + δr)êp) + F p(x− (r + δr)êp)) (A.5)

− (1 + δχ) (F p(x + (r − δr)êd) + F p(x− (r − δr)êd)) (A.6)

To make the force comparable to F free it was then multiplied with a factor of
1/r2, that was omitted in equation A.4.

Saddle point No force was assigned for a particle going to a real saddle point. The
position was calculated by finding the roots of U and using the root with
semi-definite Hessian matrix.

The orientation of the free octupoles was defined by taking the eigenvectors of
∇∇U and orienting the paramagnets along the eigenvector belonging to the bigger
eigenvalue. The same holds for the saddle point orientation. All other particles were
oriented with some relative angle γ to the projection of the external field Hext, which
gives no further information for a para- or diamagnet, but counts for the fact, that
the locked octupoles are enslaved to the external field.
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A.2 Particle forces

List of Symbols and Abbreviations

Symbol Description Unit

H Magnetic field vector, 3D A m−1

Hext External, driving field A m−1

θ Inclination of external magnetic field Hext °

ϕ Azimuth of external magnetic field Hext °

Hp Pattern field A m−1

a Lattice constant of the pattern m

a1, a2 primitive lattice vectors of the pattern

φ Symmetry parameter specifying the pattern 1

M Magnetization A m−1

µ0 Vacuum permeability, constant 4π × 10−7 V s
Am

χ Magnetic susceptibility 1

U Universal potential A2 m−2

W Potential of free octupoles J m−3

F Force N

Octupole parameters

r Size of an octupole m

Φ Orientation of an octupole °

γ Locking angle between diamagnets and Hext °

Mathematical symbols

R 2D rotation matrix

∇ 2D Nabla operator

v, v Some vector, and its magnitude

ê 2D unit vector

A : B Contraction of the matrices A and B
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