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1 Introduction

Colloidal particles have a huge area of application, so controlling their movement is
crucial to tap their full potential. There are many different ways for doing this, for
example using optical tweezers [1]. If we wanted to move many particles at the same
time, it is possible to use thermal ratchets [2], as well as magnetic field gradients [3]
or solute gradients [4]. Additional methods use direct propulsion of the particle, such
as self-propulsion by chemical or thermal active particles [5, 6] or externally driven
propulsion [7]. An other way is to use structured magnetic patterns which can be used
to control magnetic particles [8]. Now being in control over such particles, one can use
them as moving carriers in lab on a chip applications [9]. Furthermore, such systems
can be used to model other physical systems, such as solid state bodies. An example are
quantum edge states in topological insulators [10].

We work with micrometer-sized superparamagnetic core-shell particles on top of a mag-
netic 2-dimensional pattern, applying an external magnetic field with varying orientation.
We can describe the resulting transport using topological invariants [11]. That means by
winding the external magnetic field around certain points, we can derive the resulting
motion. Topological transport can be shown using a variety of patterns, for example
patterns having two-, three- or four-fold symmetric patterns [12]. Depending on the
pattern, the particle movement can only show adiabatic movement where the particle
stays always inside one minimum of its effective potential, or the minimum can annihilate
with a saddle point and the particle is following the path of steepest descend what we call
ratchet. Combining two of these patterns can show interesting effects like skipping orbits
when combining a hexagonal lattice with a two-fold stripe lattice. Instead of varying the
lattice symmetry, one can also try to combine equivalent lattices, only differing by their
lattice constant [13].

In this thesis, we study two connected four-fold lattices having the same topological
properties with different lattice constants, one double the other. This means for the
particle potential, that the smaller lattice has double the amount of minima than the
large lattice near the edge between the two simple patterns. Whereas we can observe
only adiabatic transport in the bulk four-fold pattern, this leads to ratchet movements
in some cases and we can then observe movements along the edge, whereas particles
in the bulk in one of the lattices only perform trivial motion. We will explain the
movements with simple symmetry based arguments and support this theory with results
from experiments and simulations. The experiments are performed using paramagnetic
colloidal particles on a thin magnetic pattern, driven by a modulated three-dimensional
external magnetic field generated by coils. The simulations are done using Brownian
Dynamics with the particle potential depending on the external magnetic field and the
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1 Introduction

pattern magnetic field at the particle location. They will also be used to get information
about the many different edge pattern variations, because our pattern definition allow
the choice of three independent parameters. We will also show that the transport is
topological and identify bifurcation points by varying the modulations of the external
field in simulations and compare the resulting particle positions.

I did the experiments together with Helena Massana-Cid visiting Bayreuth from the
University of Barcelona.
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2 Pattern

A general four-fold pattern can be described by

P (a,xA) = sgn
[
cos

(
2πx1A

a

)
+ cos

(
2πx2A

a

)]
(2.1)

where sgn is the sign function, a denotes the lattice constant and xA = (x1A, x2A) the
position in action space A. P equals the e3-direction of the magnetization M = PMe3.
The magnetization in e1 and e2 direction is zero. In figures, positive values of P are
drawn white, negative values black. We now want to connect two of these lattices. Thus
we define the new pattern piecewise as

Pe(a,xA) =


P (a(1),xA −∆x(1)

A ) if x2A < 0

P (a(2),xA −∆x(2)
A ) else

(2.2)

where a(i) and ∆x(i)
A correspond to the bottom (i = 1) and top (i = 2) pattern. Changing

∆x1
(1)
A and ∆x1

(2)
A simultaneously shifts the pattern only by a global offset, so we can

set ∆x1
(2)
A = 0 and have now three remaining scalar parameters to shift the two patterns

relative to each other.

The pattern we are interested in has double the lattice constant for one pattern, that
means 2a(1) = a(2) =: a. We will call this pattern P2. For easier reading we rename the
superscripts (1) and (2) to (s) and (l) for small and large patterns, see Figure 2.1. The
periodicity of the parameters are summarized in Table 2.1. Furthermore we have mirror
symmetric patterns for certain ∆x1

(s)
A . Both, the small and the large lattice, have their

own symmetry plane. If we have a symmetric P2 pattern, some symmetry planes from

parameter periodicity

∆x1
(s)
A

a

2

∆x2
(s)
A

a

2
∆x2

(l)
A a

Table 2.1: Periodicities for pattern P2
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2 Pattern

a

∆x1
(s)
A ∆x2

(s)
A

∆x2
(l)
A

Figure 2.1: Shifting parameters for the P2 pattern. The length of the arrows is the
periodicity of the parameter.

both patterns coincide. This is the case if

∆x1
(s)
A = n

a

4 , n ∈ Z. (2.3)

If n is even, there exist non-alternating symmetry planes running only through areas
with P > 0, and through areas with P < 0 else, see Figure 2.2. There is a second type,
the alternating symmetry plane running through areas with different P .

For other ∆x1
(s)
A there is no common symmetry plane, but we can find a mirrored pattern

by just changing ∆x1
(s)
A . A simple rule to find one of these patterns is to change the

sign of ∆x1
(s)
A .

To get a pattern where white and black areas are exchanged, we have to add half of the
periodicity size to each parameter:

∆x1
(s)
A
′
= ∆x1

(s)
A + a

4 (2.4a)

∆x2
(s)
A
′
= ∆x2

(s)
A + a

4 (2.4b)

∆x2
(l)
A
′
= ∆x2

(l)
A + a

2 (2.4c)

The integral over the magnetization of the bulk pattern is zero, which means that the
average magnetization of the pattern is zero because the areas with positive and negative
magnetization have the same size. If we now introduce the edge in the P2 pattern, this
is not always the case any more. That means there is no general description possible
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n even n odd

Figure 2.2: Non-alternating mirror planes for n odd and even according to Equation 2.3
are shown dashed in red, alternating mirror planes are shown in green.

and we have a non zero net magnetization of the whole pattern, which can be neglected
because it adds only a constant factor to the particle potential.
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3 Experimental setup

The experimental setup bases on a lithographic magnetic film with areas of different
magentisations in shape of specific patterns. On top, paramagnetic colloidal particles
move at a constant height driven by an external magnetic field, generated by coils. As
the particle size is on a microscopic scale they are observed via light microscopy. By
modulating the external magnetic field, the particles move in a plane parallel to the
film. We call this plane where we do our observations action space A. The external field
direction is lying on a sphere that we call control space C because it is used to control
the particles. An overview of the experiment is given in Figure 3.1.

Below are the details of the setup used for all experiments.

Microscope with CCD camera

Pattern with sample Coils

Mechanical stage

IE
EE

13
94 Microscope

assembly

KEPCO BOP 20-50GL

KEPCO BOP 20-50GL

KEPCO BOP 20-50GL
Amplifiers

Personal Computer TTi TGA1244

Arbitrary
function

generator

Tektronix TDS 2014B
Oscilloscope

Serial interface

Figure 3.1: Schematic of the setup used for the experiments.
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3 Experimental setup

a1

a2

14µm

Figure 3.2: Microscopy image of the pattern with the lattice vectors a1 and a2. Colloids
appear as black circles.

Magnetic lithographic film

The magnetic lithographic film was produced in cooperation with the Institute of Physics
and Centre for Interdisciplinary Nanostructure Science Technology in Kassel as well as
the Institute of Molecular Physics in Poznań (Poland) [14–16]. It is based on the multi-
layer system Ti4nm/Au60nm/

[
Co0.7nm/Au1nm

]5
on a silicon substrate. Subsequently it

was covered with a shadow mask created by UV lithography with a chromium hard
mask providing the structure of the pattern. Subsequently He-ion bombardment led
to a decrease of the coercive field of the pattern in the uncovered areas. The resulting
magnetic layer has a thickness of 3.5 nm. Brighter looking areas are magnetized in the
direction of the surface normal, darker areas in the opposite direction.
To keep the colloidal particles at a certain height above the pattern, it was spin-coated
with MicroChemicals AZ 1512HS positive photoresist at 3000 rpm to create a 1.6µm
polymer film.

Square patterns with edge

We use a pattern with an edge between two four-fold patterns with lattice constants
a = 14µm and a

2 = 7µm. The pattern with the small lattice constant is enclosed by the
lattice with the large lattice constant. They are arranged in a way we have access to
four different types of edges. The edges are running parallel to the lattice vectors a1 or
a2, see Figure 3.2.
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coil for z−field

lithographic pattern with sample

microscope objective

coils for x- and y-field

Figure 3.3: Three coils generating the external magnetic field and the lithographic pattern
with the immersed microscope objective.

External field creation

The external field to drive the particles on top of the pattern is generated by three
cylindrical copper coils with their center axis perpendicular to each other as shown
in Figure 3.3. Above the center of the coil for the vertical component of the field,
we position the lithographic film on a microscope glass slide. The other coils are
arranged such that their rotational axis passes through the region of interest. This
is necessary to keep the x-, y- and z-components of the magnetic field perpendicular
for getting the desired external field. As the length scale (≈ 14µm) of one unit cell
is very small against the diameter of the coils (15 mm), we can assume the magnetic
field being constant. The loops are generated on the PC according to the parameters in
section 5.4 “Modulation loops”. They are then converted into the three field components
such that the total magnetic field strength is constant. Via a serial connection these
are transferred to the arbitrary function generator TTi TGA1244 (Figure 3.5), which is
used to generate the waveforms for the three coils. The generator output is amplified
by three amplifiers of type KEPCO BOP 20-50GL to drive the low resistance coils. To
check the signal, an oscilloscope (Tektronix TDS 2014B) is used. The resulting magnetic
field is approximately 10 kA

m . It was calibrated for each of the three coils by adjusting the
waveform generator output voltage to get the desired field, measured by a Lake Shore 410
Gaussmeter.
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3 Experimental setup

Figure 3.4: Image of the microscope used
with coils for external magnetic
field creation.

Figure 3.5: Image of the arbitrary function
generator used to generate the
waveforms for the three coils.

Microscope

We use a Leica DM2500P microscope with the objective (Leica C PLAN 63x/0.75 )
immersed into the sample (Figure 3.4). We use top lighting because the lithographic film
is opaque. The image is captured via a monochrome CCD camera (Leica DFC360 FX)
and transferred to a computer for observation and recording. The pixel density of the
resulting image has been determined as 5.35± 0.05 px

µm . The sample can be moved in
horizontal directions using the mechanical stage.

Sample

The sample containing the paramagnetic colloidal particles is prepared by mixing purified
water with Dynabeads M-270 in a ratio of 4000:1. This is resulting in approximately
500 particles per µl. The resulting sample is mixed using a vortex mixer. We pipette
20µl on the cleaned pattern film and wait until the particles have sedimented to the
polymer film. Their center of mass is now approximately 3 µm above the magnetic
pattern. Now the particles can be positioned using modulation loops of the external field
and the experiments can be done.

14



Problems

As the particles have a dipole moment higher than the pattern if the external field
is enabled, they attract each other. This is unwanted in our case because multiple
connected colloids behave differently. Thus we have to reduce the concentration such
that we have still enough particles in the areas where we want to do our experiments,
but as less agglomeration as possible.

Another problem in the experiments is that the pattern has experienced damage such as
scratches from previous experiments and cleaning, so colloids are often blocked at such
defects and sometimes trapped. Sometimes they can be freed again by applying different
modulated external fields, but often they can not be recovered and are lost for use in
the experiment.
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4 Mathematical Model

The system consisting of the thin magnetic pattern and the paramagnetic particles can
be described by a simple mathematical model. We first derive the magnetic field of the
pattern at a certain height above it and then the potential of the particle inside that
field. Based on this we explain some properties of that potential which are useful for
understanding the movement of the colloidal particles.

4.1 Pattern magnetic field

The magnetic pattern constists of different regions with magnetisations M(xA) =
M(xA) e3 in the x1A-x2A-plane (action space A). The magnetic field of the pattern can
be expressed by Poisson’s equation [17]

∆Ψ = ∇ ·M (4.1)

where Ψ is the magnetic potential given by

HP = −∇Ψ (4.2)

with HP the magnetic field of the pattern. The Green’s function of the Laplace operator

G∆(x) = − 1
4π

1
|x| (4.3)

solves the Poisson’s equation and gives us the magnetic potential

Ψ(x) =
∫
V

d3x′G∆(x− x′)∇x′ ·M(x′) (4.4)

and thus the magnetic field

HP (x) = ∇x

∫
V

d3x′∇x′ ·M (x′)
4π|x− x′| (4.5)

Assuming a thin film at x3 = 0 we can set ∇x ·M(x) = M(xA)δ(x3). The magnetic
field is now

HP (xA, z) =
∫
A

d2x′A
(xA − x′A) + ze3

4π|(xA − x′A) + ze3|3
M(x′A) (4.6)
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4 Mathematical Model

integrating over the x1A-x2A-plane which equals the action space A, and z is the height
above the pattern, see Figure 4.1a for an example.

4.2 Particle potential

Now we can derive the potential of our colloids above the pattern with a constant external
magnetic field Hext. The magnetic moments m of the colloids with volume V and a
relative susceptibility χeff are induced by the magnetic field H:

m = χeffVH (4.7)

The energy of one particle can then be written as

E = −µ0m ·H = −µ0χeffVH2 (4.8)

which leads to a particle potential

U ∝ −H2 = −(HP + Hext)2. (4.9)

As the shape of the potential landscape changes only with the direction of Hext, but
not with its absolute value, we can restrict Hext to a constant length, thus lying on a
sphere. This sphere of the external field is called control space C as it is used to control
the particle potential. We can now describe Hext by two polar coordinates θ and φ. The
conversion to Cartesian coordinates is defined by:

x1 = cos(φ) sin(θ)
x2 = sin(φ) sin(θ)
x3 = cos(θ)

(4.10)

Because the colloids are far away from the magnetic pattern such that HP
2 is small and

Hext
2 is now constant, the potential can be approximated by

U(xA,Hext) ≈ −HP (xA) ·Hext. (4.11)

A plot of the resulting potential for an example Hext and P2 pattern is shown in
Figure 4.1b.

4.3 Stationary magnetic field

For a given Hext we have minima, maxima and saddle points of the potential U in
action space. Because U can be written as a scalar product of HP and Hext, changing
Hext → −Hext converts all minima to maxima and vice versa. We call the regions
where minima respective maxima can be located for any Hext allowed regions, the others

18



4.3 Stationary magnetic field

(a) (b)

Figure 4.1: Examples of magnetic field and particle potential for a P2 pattern; (a) shows
the H field at a fixed height, overlayed with the black and white pattern
image. The colors indicate the direction in the x1-x2-plane and the brightness
the x3-component of the field; (b) shows the corresponding paramagnetic
particle potential for Hext = (1,−1, 0) with the brightness proportional to
the potential value, such that the particle is located in the dark areas. As you
can see, the part of the pattern with the small lattice constant has double as
many minima along the edge as the large pattern.
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4 Mathematical Model

forbidden regions. In allowed regions, adiabatic transport is possible, whereas the particle
can be found in forbidden regions only temporary while in a ratchet movement, following
the path of steepest descent to a minimum. A point xA is such a stationary point of U
if the external field is stationary:

Hs
ext(xA) ∝ ±∂x1HP (xA)× ∂x2HP (xA). (4.12)

Using this external field we can test for allowed and forbidden regions by using the
determinant of the Hessian matrix:

|Hs
ext(xA) · ∇A∇AHP (xA)|

{
> 0 : allowed region, extremum
< 0 : forbidden region, saddle point

(4.13)

It is further possible to split the allowed regions into north and south allowed regions.
North (south) regions are regions where a minimum exists if Hs

ext,3 is positive (negat-
ive).

By modulating the external field Hext, the positions of minima change. That means a
particle is moving along with the minimum it is located in. This motion is time reversible,
i.e. reversing the modulation moves the particle the same way back without hysteresis.
We call that an adiabatic motion.

In contrast, if a minimum passes the border of the allowed region, the fence, it meets a
saddle point from the forbidden region and annihilate. As the particle is not a stable
position any more, it moves along the path of steepest descend to another minimum.
This movement is called a ratchet motion. A ratchet motion is not time reversible and
cannot be easily predicted, even if knowing the position of all minima.

20



5 Simulations and loop generation

The mathematical model described before can be used to simulate the behavior of
the colloids for arbitrary magnetic patterns. This is done using Brownian dynamics
simulations which neglects the inertia of the particle, similar to the real system. In
addition, we use random numbers to introduce noise in the simulation to prevent that
particles stay at saddle points or maxima of the particle potential. In this chapter we
will discuss the details of the simulations and how the loops for the experiments are
generated.

5.1 Calculation of particle potential

The pattern is generated on a pixel (px) grid. This is used to calculate the pattern’s
magentic field Hext on the same grid using Equation 4.6 with the height z = 0.2 a above
the pattern. The integration of Hext(x) is performed over a circular area around x with
radius r. This is possible, because the sum of magnetic moments of one full unit cell is
zero, and for large r the sum of contributions of the cells cut by the integration circle
is small. We calculated the potential of one point for different r to find a good value
for the radius, see Figure 5.1. The resulting pattern field is filtered using a Gaussian
filter with a standard deviation of σ = 3 px to remove artifacts created by the numeric
integration.

5.2 Brownian dynamics simulation

The simulations are done using Brownian dynamics simulations. A paramagnetic particle
moves at a fixed height z, driven by the potential gradient force Fpg and a random
force FB, both dampened by a friction factor ξ. The equation of motion can then be
written as

ξẋA = Fpg + FB (5.1)

We use two timescales, one for the integration of the equation of motion of the
particle TI = 1 step, and one for the change of the external field TF = 1000TI . For
a loop in control space with n = 1000 points, the number of integration steps is
n · TF = 106 steps.

The gradient force is calculated numerically by calculating the symmetric difference

21



5 Simulations and loop generation

−180
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−140
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−80
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−40

−20

0

0 50 100 150 200 250 300 350 400
a

U

r in px

Hext = (1, 0, 0)
Hext = (0, 0, 1)

Figure 5.1: Potential values of one point directly at the edge for a P2 four-fold edge
pattern with lattice constant a = 100px, plotted for different integration
radius values r for a given Hext. We see that U stabilizes after passing a
value of r ≈ 150 px.
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5.3 Four-fold pattern topology

quotient
(Fpg)i = (−∇xU)i = −U(x + hi)− U(x− hi)

2h (5.2)

with h = (h, h, 0) and U the potential from Equation 4.11 for the given external field
from the control space loop. As the potential value is available only on the grid HP has
been calculated, h is a grid index step of one.

The random force FB is Gaussian distributed and calculated for every time step by
using the Box-Muller transform based on random floating point numbers generated by a
Mersenne-Twister generator [18]. First, we generate two pseudorandom floating point
numbers u1,u2 in the interval [0, 1). Then we apply the Box-Muller transform and scale
the result with the standard deviation σ:

FB =
(
σ
√
−2 ln u1 cos(2πu2)

σ
√
−2 ln u1 sin(2πu2)

)
(5.3)

The standard deviation is chosen as σ = 0.4a, the friction constant as ξ = 390Mz
a . In

x3-direction both forces are zero.

Finally, the equation of motion is integrated using Euler integration:

xA(t+ TI) = xA(t) + Fpg(xA(t), t) + FB(t)
ξ

TI (5.4)

5.3 Four-fold pattern topology

To have an idea how we design our loops to use with the four-fold edge patterns,
we first take a look at the loops we would use for the bulk four-fold pattern. This
pattern consists out of a lattice of squares with alternating positive and negative
magentisations, see Figure 5.2a. For external fields parallel or antiparallel to the surface
normal vector, a paramagnetic particle is located in the center of the square with positive
or negative magnetization. We now want to explain the transition between these two
points. Calculating the allowed and forbidden regions as described before in section 4.3,
we can see the fences crossing at four points for every unit cell. These gates are the only
points where a minimum can exit its square, that is where a particle can exit adiabatically.
Because of the ±x3 symmetry, these gates need to be at the equator (θ = 90◦). You can
see the gates in Figure 5.2b for action space A and in Figure 5.3b for control space C. In
C the four fences are just points at the equator with the gates between them. Winding
around one fence point moves the particle one unit cell in a certain direction [19]. Details
are given in Figure 5.3a. We will assume that the transport across and along the edge
is similar to the bulk transport so we will use the same loops as for the bulk four-fold
pattern.
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5 Simulations and loop generation

a1

a2

(a) (b)

Figure 5.2: (a) Plot of the action space A of a four-fold pattern. One unit cell is enclosed
by a blue frame. White areas have positive, black areas have negative
magnetization; (b) Corresponding forbidden (red) and allowed (green) regions
in A combined with the pattern. The allowed regions are in the center of
the black and white areas, and the gates are marked as black points in the
center of the boundaries between both. Fences are the borders between red
and green regions.
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5.4 Modulation loops

5.4 Modulation loops

The modulation loops used in the simulation and the experiments are rectangular in
θ -φ - space. They can be specified by a center point (θ0, φ0) and by the maximum
displacement (∆θ,∆φ) for each angle. Additionally, they can run in a mathematically
positive or negative sense and can have different starting points.

For the four-fold pattern there are 4 fence points to wind around. Thus we have a set
of four (θ0, φ0) to use if we want to wind only around one point each, see Figure 5.3.
For simplification we set ∆θ = 90◦ so we can connect multiple loops without worrying
about the change from the end of one loop to the start of the next one. A loop is then
described by three parameters, the winding point q, the φ-displacement ∆φ and the
number of windings n. We denote such a fundamental loop as Lnq [∆φ]. If n is positive
(negative), we wind around the fence point in mathematically positive (negative) sense.
The time inverse of such a fundamental loop is written as L−nq [∆φ]. The starting point
and end point is set at (θ0 + ∆θ, φ0 + ∆φ), which is in the south, so the particle starts
on a black area.

We can concatenate mutliple of these fundamental loops to create a modulation that
doesn’t lead to net transport for the bulk four-fold pattern. The simplest way of doing
that is to connect four loops winding around a different fence point each in the same sense.
An example would be L1

q1L
1
q2L

1
−q1L

1
−q2 . Additionally, we can create loops which are time

reversible, that means they are identical in control space C if you run them backwards.
We can achieve that by extending the loop with its mirror image in a temporal sense.
Using the example above gives us L1

q1L
1
q2L

1
−q1L

1
−q2L

−1
−q2L

−1
−q1L

−1
q2 L

−1
q1 . We will call such

loops palindrome loops.

If we now exchange the four-fold pattern with the four-fold edge pattern P2, the particle
does generally not return to its start position. That leads to a net transport, which is
parallel to the edge. We take a closer look at this transport in the next chapter.
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5 Simulations and loop generation

fence point in C φ0 direction in A

q1 0◦ −a2
q2 90◦ a1
−q1 180◦ a2
−q2 270◦ −a1

(a)

0◦

45◦

90◦

135◦

180◦
0◦ 90◦ 180◦ 270◦ 360◦

θ0

φ0

2∆
θ

2∆φ

start

−q1q2 −q2q1 q1+
−south

north

θ

φ

0◦

45◦

90◦

135◦

180◦
0◦ 90◦ 180◦ 270◦ 360◦

(b)

Figure 5.3: Fence points for four-fold pattern: (a) lists the fence points and the corres-
ponding φ in control space C and the movement direction in action space A;
(b) shows the fence points in C projected into the φ-θ-plane as green circles
and gates as green dashed lines. The red (blue) arrow indicates winding in
mathematically positive (negative) sense around one fence point. The point
for starting on an area with magnetization in −e3-direction is marked with
‘start’.

26



5.5 Ratchet detection in simulations

5.5 Ratchet detection in simulations

To detect ratchets we can use the speed of the particle. For adiabatic movement the speed
is proportional to the speed of the external field, for ratchets the speed is independent
of it. If we now lower the speed of the external field by increasing the loop’s timescale
TF relative to the integration timescale TI , ratchets get visible as peaks as the speed
for adiabatic movements gets smaller. Because of the noise introduced by the random
force, we have to filter the positions or speed before use. The filtering is done using a
Gaussian filter. Plotting the speed in action or in control space enables us to see points
where ratchets occur, which are lying on fences, because there the minimum vanishes
which leads to the ratchet.

To build a full fence diagram, we simulate loops with increasing ∆φ hitting both poles.
We wind around the two fence points for the bulk lattice q1 and −q1. Then we plot
the speed for any of these loops in a φ-θ-diagram and the passed fences get visible as
lines. This method only finds fences actually crossed by the used loops, not all of them.
An alternative way of obtaining the fence is by calculating the forbidden and allowed
regions as described in section 4.3 and finding the interface between both, which is also
the fence. By calculating the stationary external field Hs

ext there, we can also obtain the
fence in control space C.
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6 Results

We used simulations and experiments with colloids on a magnetic pattern as described
in the previous chapters. Looking at loops providing no net transport in the bulk, we
found the existence of edge currents in the case of the particles passing the edge. In the
following we will derive a theory based on basic symmetry considerations and verify it
with experiments and simulation results.

6.1 Cyclotron loops

We start by running a simple modulation loop L−n−q1L
−n
−q2L

n
−q1L

n
−q2 , n = 2 on a simple

four-fold pattern with no edge. That means winding around two fence points of the
four-fold lattice two times in each sense. This loop lets the particle move two unit cells
in each of the main directions parallel or antiparallel to a1 or a2 as shown in Figure 6.1.
That obviously leads to no net movement after one full modulation. We can also note
that this is true for any n ∈ Z. For this and all following loops in experiments and
simulations we used ∆φ = 35◦, unless otherwise stated.

Next we use a P2 pattern containing an edge and run again the same modulation
L−n−q1L

−n
−q2L

n
−q1L

n
−q2 , n = 2. The starting point lies on the large pattern and is selected

such that the particle crosses the edge and the particle movements parallel to the edge
are not influenced by it. Instead of no movement in the case of a simple four-fold pattern,
on P2 we observe that after one full modulation the particle is at a different location
than at start, an edge transport has occurred. The particle is moving one large unit cell.
This can be explained by decomposing the full loop into sub-loops, shown in different
colors in Figure 6.2. The first and third part L−2

−q1 and L2
−q1 are both crossing the

edge. The second part L−2
−q2 moves the particle by a, which is the periodicity of the

P2 pattern in a1 direction. Thus the first subloop L−2
−q1 is fully reversed by the third

one L2
−q1 because both are adiabatic and run at equal positions only separated by

one large unit cell. This leads to no net movement. So the movement rises from the
other two contributions. The second contribution L−2

−q2 induces movement of a in a1
direction, the fourth part L2

−q2 of −2a in a1 direction. So the total displacement is
−a which is the size of one large unit cell, matching the result. For another cyclotron
loop, the particle moves in the other direction if the direction of the second and fourth
contributions are exchanged. We can calculate the total displacement s along a1 for one
full modulation as

s(n) = ±n2 · a (6.1)
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{en
d

start

1. L−2
−q1

2. L−2
−q2

4. L2
−q2

3. L2
−q1

Figure 6.1: Even (n = 2) cyclotron loop L−2
−q1L

−2
−q2L

2
−q1L

2
−q2 on a simple four-fold pat-

tern winding around two fence points. The trajectory was obtained using
simulations.

{end
start

1. L−2
−q1

2. L−2
−q2

4. L2
−q2

3. L2
−q1

Figure 6.2: Even (n = 2) cyclotron loop L−2
−q1L

−2
−q2L

2
−q1L

2
−q2 on a P2 four-fold edge

pattern using two fence points, trajectory from simulations.
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6.1 Cyclotron loops

L−2
−q2
L−2
−q2

L−2
−q1
L−2
−q1

L−2
q2
L−2
q2

L−2
q1
L−2
q1

14µm

Figure 6.3: Experimental even (n=2) cyclotron loop on the edge; the particle is experi-
encing a net transport to the left because it is displaced by one large unit
cell after every modulation loop. In the bulk there is no net movement.
We used the loop L−2

−q2L
−2
−q1L

−2
q2 L

−2
q1 which runs in an inversed order than in

Figure 6.2, so the resulting transport is in the opposite direction (note the
rotated pattern). For better visibility a pattern image is overlayed to the
microscopy image.

for even n, if the particle movement for parts of the loop meant to transport parallel
to the edge behave like being in bulk and the edge is actually penetrated. The whole
process is adiabatic, i.e. time reversible and running the loop backwards afterwards
undoes the net movement.

If our loop instead winds around all four fence points, that means the transport from the
small to the large lattice might be a ratchet, the transport distance s could be increased
or decreased by one unit cell for some combinations of loops and patterns. Details when
this is the case can be derived from the results discussed in section 6.5. An example of
an even cyclotron loop in experiment can be seen in Figure 6.3. The bottom edge of
the small pattern which is mainly crossed in the experiments has parameters similar to
∆x1

(s)
A = 0.075a, ∆x2

(s)
A = 0.15a and ∆x2

(l)
A = 0.5a.

Now the question arises, what happens if n is odd? In the large unit cells the particle
can only be displaced by integer multiples of a. We again look at the different parts of
the modulation, see Figure 6.4. In the first part L−3

−q1 we cross the edge adiabatically
from the large to the small lattice. Next we move n small unit cells parallel to the
edge (L−3

−q2 ). Until now nothing special has happened. In the third part L3
−q1 we

move back to the large lattice. If n was even there was no problem because we would
observe the time inverse of the first part. For odd n we are facing a ratchet resulting the
particle to go to one of the large unit cells depending on the shape of the fundamental
loop where the ratchet occurs and of the pattern (and the particle height above the
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{
en
d

start

1. L−3
−q1

2. L−3
−q2

4. L3
−q2

3. L3
−q1

Figure 6.4: Odd (n = 3) cyclotron loop L−3
−q1L

−3
−q2L

3
−q1L

3
−q2 on a P2 four-fold edge pattern

using two fence points, trajectory from simulations. The particle has moved
by two large unit cells after one full modulation.

pattern). Depending on the pattern we result in the cell reached by running the third
part L3

−q1 starting one small unit cell to the left or to the right of the actual position.
These two adiabatic paths are protecting the ratchet from going elsewhere. The fourth
part L3

−q2 is again simple, moving n large unit cells parallel to the edge. The resulting
edge transport for one full modulation is

s(n) = ±n± 1
2 · a (6.2)

for odd n if the same conditions as for even n are met. To determine the exact edge
transport the results discussed in section 6.5 are needed.

6.2 Asymmetric palindrome cyclotron loops

We can now extend our cyclotron modulation loop by its time inverse. That gives us a
palindrome loop like Lnq1L

n
q2L
−n
q1 L

−n
q2 L

n
q2L

n
q1L
−n
q2 L

−n
q1 . We again start on the large lattice.

For even n this is purely adiabatic as we have shown before and we expect no edge
transport. To see this step-by-step, we can cancel out time reversed pairs next to each
other without changing the resulting transport. We start with the pair in the middle
(L−nq2 L

n
q2) and continue until we have nothing left. That means we have no edge transport

for even n. An example can be seen in Figure 6.5. Again the case for odd n is more
complicated.
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6.2 Asymmetric palindrome cyclotron loops

L∓4
q1
L∓4
q1

L∓4
−q2
L∓4
−q2

L±4
q1
L±4
q1L±4

−q2
L±4
−q2t

t
14µm

Figure 6.5: Experimental even (n=4) asymmetric palindrome loop L−4
q1 L

−4
−q2L

4
q1L

4
−q2

L−4
−q2L

−4
q1 L

4
−q2L

4
q1 in bulk and penetrating the edge. There is no net transport

in both cases because we have only adiabatic transport in the first half of
the loop which is reversed by the second half. The loop specifiers in the
image specify the forward and backward loop, the forward loop is run in a
mathematical sense given by the top sign, the backwards loop by the bottom
one. The start/end point is drawn as a blue circle. For better visibility a
pattern image is overlayed to the microscopy image.
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{end start

L3
q1

L−3
q1

L3
q2
L−3
q2

1.

2.

3.

4.

5.

6.

7.

8.

Figure 6.6: Asymmetric palindrome loop L3
q1L

3
q2L
−3
q1 L

−3
q2 L

3
q2L

3
q1L
−3
q2 L

−3
q1 run in simulation.

Same colors mean identical modulation subloops in control space. The arrows
on the trajectories and the corresponding numbers show the direction and
order of the particle trajectories.

We will explain the odd case with the help of Figure 6.6 for n = 3. Looking at the
middle of the loop we can cancel the pair L−3

q2 L3
q2 (4. & 5.) because it is adiabatic

motion parallel to the edge. The next pair cannot be canceled because L−3
q1 (3.) is a

ratchet. This ratchet occurs when transitioning from the small to the large lattice. When
returning from the large to the small lattice with L3

q1 (6.), the motion is adiabatic
again and we and end up one small unit cell displaced. We can describe the movement
along the edge because of the ratchet as s = ±a

2 . Remembering this displacement we
can now omit the pair L−3

q1 L3
q1 (3. & 6.) and can further cancel the adiabatic pair

L3
q2 L−3

q2 (2. & 7.). What is left is L3
q1 (±a

2 )L−3
q1 . The displacement is explicitly

written down because it means that L−3
q1 will contain a ratchet. This ratchet is the

same as before and it results in the same displacement ±a
2 . So for odd n we can say

that
s(n) = ±a (6.3)

if we start in the large lattice and the same conditions as before are fulfilled. This can
be confirmed by simulations and experiments, see Figure 6.10 and Figure 6.7.

So far we have only used palindrome loops with two fence points on the four-fold edge
pattern each. We would get equivalent results by swapping one or both with their
opposite fence points or by changing the encircling direction. Below we want to discuss
modulations using at least the fence points q1 and −q1. We can use these for loops with
two different edge crossings.
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6.2 Asymmetric palindrome cyclotron loops

L∓3
q1
L∓3
q1

L∓3
−q2
L∓3
−q2

L±3
q1
L±3
q1

L±3
−q2
L±3
−q2

t

t

14µm

Figure 6.7: Experimental odd (n=3) asymmetric palindrome loop L−3
q1 L

−3
−q2L

3
q1L

3
−q2

L−3
−q2L

−3
q1 L

3
−q2L

3
q1 in bulk and penetrating the edge. There is transport of one

large unit cell every full loop penetrating the edge. For better visibility a
pattern image is overlayed to the microscopy image.
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even loops odd loops

L∓2
q1L
∓2
q1

L∓2
−q2L∓2
−q2

L∓2
−q1L∓2
−q1

L∓2
q2L
∓2
q2

s
s

(a)

L∓3
q1L
∓3
q1

L∓3
−q2L∓3
−q2

L∓3
−q1L∓3
−q1

L∓3
q2L
∓3
q2

s

s

(b)

L±2
−q1L±2
−q1

L±2
q2L
±2
q2

L±2
q1L
±2
q1

L±2
−q2L±2
−q2

s
s

(c)

L±3
−q1L±3
−q1

L±3
q2L
±3
q2 L±3

q1L
±3
q1

L±3
−q2L±3
−q2

s

s 14µm

(d)

Figure 6.8: Experimental even (n = 2, (a) and (c)) and odd (n = 3, (b) and (d)) sym-
metric palindrome loops in bulk and penetrating the edge. Images on the top
start on areas with negative (black) magnetization, images on the bottom
start on areas with positive (white) magnetization. Loops starting on black
areas start in the south of C and in the north if starting on white. This is
used to “create” a second pattern type. There is edge transport for the even
loops if starting on black and for odd loops if starting on white. This is not
the general case because it depends on the pattern. For better visibility the
pattern image is overlayed to the microscopy images.
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6.3 Symmetric palindrome cyclotron loops

First we define our new palindrome loop L−nq1 L
−n
−q2L

−n
−q1L

−n
q2 L

n
q2L

n
−q1L

n
−q2L

n
q1 . The loop

has a symmetry plane perpendicular to the edge in control space. Therefore we call such
loops symmetric loops. Examples from the experiments are given in Figure 6.8. We start
again by canceling the adiabatic pair L−nq2 Lnq2 . The next pair L−n−q1 Ln−q1 may
contain a ratchet or not. We cannot determine this, because we do not have any other
edge transition winding around −q1. So we remember this pair with s = 0,±a

2 . The
next adiabatic pair L−n−q2 Ln−q2 cancels and we remain with L−nq1 (0,±a

2 )Lnq1 . For
a general edge pattern the two edge crossing fundamental loop pairs are not correlated
to each other so we can again say that s = 0,±a

2 . Adding the two single results together
in any combination we get

s(n) = 0,±a (6.4)

if winding around ±q2 is always adiabatic and we have actually crossed the edge. For
patterns having a common symmetry plane perpendicular to the edge, the edge crossing
parts are now correlated and the displacement at the two different ratchets cancels each
other or we don’t have ratchets at all, so s = 0 in these cases.

If we build palindrome loops reversing on the small lattice, we observe no edge transport
at all if our first edge crossing is adiabatic. The path entering the small lattice is always
adiabatic, so reversing this path also leads to an adiabatic path back to the large lattice.
If the first edge crossing is not adiabatic, we observe a one-time transport for the first
run of the loop. After that the particle is offset one small unit cell and the next loop
will be purely adiabatic.

We have seen that the edge transport depends on the type of pattern, so we will try to
classify them. Symmetrical patterns can be divided into two types, one where we have a
symmetry plane passing only black areas and one type with a symmetry plane passing
only white areas. We call these non-alternating mirror planes. As we start on black in
the large lattice, our start and end points lie on non-alternating mirror planes for some
symmetric patterns and on alternating mirror planes for other symmetric patterns. If
the movement of the particle in the small lattice parallel to the edge is mirror symmetric
to the non-alternating plane when running a symmetric palindrome loop, we expect no
ratchet, because the adiabatic movement from the small to the large lattice is mirrored.
Otherwise we expect to see two ratchets, both when crossing the edge from the small to
the large lattice, see Figure 6.9.

Non symmetrical pattern types are not that easy to describe and the movement depends
on the exact shape of the loop and the particle height above the pattern. We have
simulated many different patterns for a particle height z = 0.2a with different loops
to get an idea of the different possible particle behaviors. The methodology used has
already been described in chapter “Simulations and loop generation”. For every pattern
we run different loops and record the position differences between start and end, the
edge transport. These can be represented in phase diagrams. As we have at least four1

1An additional parameter would be the height z above the pattern
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yen
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1.
2.

3.

4. 5.

6.
7.

8.

yen
dstart

1.

2. 7.

3.

5. 4.

6.
8.

Figure 6.9: Symmetric palindrome loop Lnq1L
n
q2L

n
−q1L

−n
q2 L

n
q2L
−n
−q1L

−n
q2 L

−n
q1 on a symmetric

pattern starting on an alternating mirror plane, trajectories from simulations.
The numbers give the succession of the trajectories for the different subloops
and the arrows the direction in case of hysteresis. On the left, a loop with
even n = 2 is shown. Because the movement in the small pattern parallel to
the edge (2. or 7.) has no common non-alternating mirror plane (dashed red)
with the pattern, we see ratchets and thus hysteresis. The right image shows
the loop for odd n = 3. Here we see the common non-alternating symmetry
plane and the motion is purely adiabatic. In both cases there is no net edge
transport.

parameters (three for the pattern and ∆φ), we can not show all results in one diagram.
Instead we plot diagrams for fixed ∆x1

(s)
A and ∆φ showing a ∆x2

(s)
A -∆x2

(l)
A -plane.

6.4 Phasediagrams for palindrome loops

Using the phase diagrams, we first confirm the statements for the non-symmetric loops.
We look at phase diagrams for odd and for even loops. Even loops show no transport
at all as expected, the phasediagram contains only black (no transport) and white (no
edge crossing) regions. The results for the odd asymmetric palindrome loops, examples
are given in Figure 6.10, confirm the expectations for all patterns where the particle
can successfully cross the edge in both directions for the given ∆φ. We can see phases
of edge transport parallel and anti-parallel to a1. There is no obvious rule how the
transport direction depends on the parameters. Near the transition between phases we
see different directions originating from randomized edge crossings, influenced by the
random forces. At white areas no proper transport across the edge from the large to the
small pattern could be achieved with the loop used.

Looking at the results for the symmetric loops in Figure 6.11, we can see phases
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6.4 Phasediagrams for palindrome loops

with no edge transport and with edge transport of ±a as expected. For symmetrical
patterns we see that no net transport occurs. Looking at the patterns with ∆x1

(s)
A = 1

8a

and ∆x1
(s)
A = 3

8a which are mirror images of each other, we see that the shape of the
phasediagram is identical, only the color (edge transport direction) is different. This
is obvious, because the loop itself is symmetrical, so mirroring just the pattern equals
mirroring the whole system, including the resulting edge current.
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Figure 6.10: Phasediagrams for ∆φ = 35◦, asymmetric odd palindrome loops winding
around −q1 for movement perpendicular to the edge; red phases are trans-
porting particles one unit cell a to the right for the given loop, blue phases
to the left, other colors are caused by particles unable to cross the edge
properly.
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Figure 6.11: Phasediagrams for ∆φ = 35◦, symmetric palindrome loops, left odd loops,
right even loops, colors are the same as in Figure 6.10. The symmetric
patterns (∆x1

(s)
A = 1

4a) show no transport (black) as expected. For a given
pattern there is transport either for odd or even symmetric palindrome
loops or no transport at all, also depending on ∆φ.
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-2 0 2 4

-2 -1 0 1 2 3 4

Ln−q1
Ln−q1L−nq1

L−nq1
Ln−q1
Ln−q1L−nq1

L−nq1

L−n−q1
L−n−q1

Lnq1
Lnq1

Figure 6.12: Example of deriving behavioral modes from particle trajectories for an α2
mode. The numbers are relative coordinates in x1-direction. Trajectories
with two arrows are adiabatic, the others show ratchets. The result is
translation invariant along the edge, so adding 2n (n ∈ Z) to every coordin-
ate number gives us the same result, drawn as transparent trajectories.
The loops used are L±2

±q1 . The labels at the arrow tips indicate the used
modulation for the trajectory.
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6.5 Behavioral modes

6.5 Behavioral modes

The phase diagrams for the different loops show only part of the possible edge crossings
each, so it makes sense to combine them. We define phases containing all the information
on the edge transport for all previous cyclotron and cyclotron palindrome loops. These
transport modes describe the behavior for a certain ∆φ and pattern, thus we will call
them behavioral modes.

For a given pattern P2(∆x1
(s)
A ,∆x2

(s)
A ,∆x2

(l)
A ) we start in the small or large lattice on a

black area and wind around q1 and −q1 using fundamental loops L±n±q1 [∆φ] with a fixed
∆φ in the right mathematical sense for crossing the edge in any of the six distinct ways.
The system is translation invariant along the edge, so we have to simulate only these
six trajectories to get all the information we need to define our behavioral modes. We
place the origin of the x1 coordinate within a black square of the large lattice and use
a second origin of the x1 coordinate in the small lattice such that edge crossing path
induced by Lnq1 connects the two origins. With this choice of coordinates, the movement
across the fence in a1 direction is zero for the modulation Lnq1 . Furthermore we specify
the x1 coordinate in units of the size of a unit cell of the small pattern. We note down
the resulting coordinate parallel to the edge for the other modulation L−n−q1 which also
transfers a colloid from the large to the small lattice. The two inverse loops L−nq1 and
Ln−q1 transfer a colloidal particle in opposite direction, i.e. from the small towards the
large lattice. For this transfer there are two possible distinct starting points x1 = 0
and x1 = −1. Thus, we have two transfers from the large to the small lattice and four
transfers from the small towards the large lattice. An example is given in Figure 6.12.
We call a unique combination of the resulting particle coordinates in the small and large
lattice after crossing the edge a behavioral mode. Any of these combinations we found
are listed in Table 6.1.

By extending this data using its periodicity for other starting cells, one can see symmetries
in the behavioral modes. We extend the coordinates resulting of the transfer from the
small towards the large lattice. We take α1 as an example where we read the small→ large
columns as (0, 0, 0, 0) for starting at the small cell coordinates x1 = −1 and x1 = 0 which
is overlined to indicate the start position at the coordinate origin. We extend these
values for starting in the small cell at x1 = 1. Because of the periodicity of two small
unit cells in x1 direction, we take the values for the starting cell x1 = −1, add two, and
assign them to the starting cell at x1 = 1. Our resulting coordinates in the large lattice
are now (0, 0, 0, 0, 2, 2). We now want to mirror the coordinates for the transfer from
the small to the large pattern as well as the loops at a mirror plane perpendicular to
the edge. This equals mirroring the pattern at the same plane. Mirroring the loops is
easy, because we only have to swap Ln−q1 with L−nq1 . For mirroring the coordinates in
the small lattice we have to find the x1-position of the mirror plane in the coordinate
system of the small lattice. Looking at the columns for the large → small transition
we find that both are zero for the mode α1. They give us the position of the mirror
plane in the small lattice which is at x1 = 0 in this case. In general the mirror plane is
at the mean value of the two entries. To perform the mirror operation for the starting
coordinates in the small lattice we mirror them at this mirror plane position, i.e. reverse
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large→ small small→ large

Name Color L0,Lnq1 L0,L−n−q1 S−1,Ln−q1 S−1,L−nq1 S0,Ln−q1 S0,L−nq1

α1 0 0 0 0 0 0
α′1 0 1 -2 0 0 0
α2 0 0 -2 -2 0 0
α′2 0 1 -2 -2 -2 0
β1 0 0 -2 0 0 0
β′1 0 1 -2 -2 0 0
β2 0 0 0 -2 0 0
β′2 0 1 -2 0 -2 0
β3 0 2 -2 -2 -2 0
β′3 0 -1 0 0 0 0

Table 6.1: Behavioral modes with name and color. The table gives the coordinates in
x1-direction for the target pattern as shown in Figure 6.12. The starting
coordinate x1 is given in the table head in the form of Lx1 (starting in large
pattern) or Sx1 (starting in small pattern). The table head also specifies
the modulation L±n±q1 used to cross the edge. The resulting coordinate can
then be read from the table. The coordinates for the large pattern are given
in multiples of two. Underlined numbers indicate a ratchet. The phase
pairs α1/α2 and α′1/α′2 are mirror symmetric to each other, β-phases are self
symmetric. Phases marked with a prime have white and black exchanged on
the pattern.

their order keeping the markings for x1 = 0 at the same place relative to the mirror
plane. We then mirror the resulting coordinates in the large lattice at the mirror plane
there, which is always at x1 = 0, so we change the sign of the coordinates resulting in the
large lattice. For our α1 mode we get (−2,−2, 0, 0, 0, 0) after performing both steps. The
resulting x1 coordinates for the large→ small transition do not change when performing
the mirror operation. So as a result we have table entries for large→ small (0, 0) and for
small→ large (−2,−2, 0, 0). If we compare these with Table 6.1 we note that these are
identical to the behavioral mode α2. We can conclude that α2 is the mirror image of α1.
Such non self symmetric (asymmetric) modes are marked with α and have a symmetry
partner each. Asymmetric mode pairs symmetric to each other are α1/α2 and α′1/α′2.
If we repeat the mirror operation on a different type of mode, for example on β1, the
resulting coordinates are the same, so the mode is invariant under this operation. We
call such modes self symmetric modes and mark them with β.

Phases for patterns sharing the same fences because black and white areas are exchanged
are marked with the same letter and number such as α1, but the ones behaving like having
common non-alternating symmetry planes through white areas when using symmetric
palindrome loops get a prime (α′1).

In the phase diagrams we give a color to each mode. A list of the different phases with
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6.5 Behavioral modes

even odd

Mode symmetric symmetric asymmetric q1 asymmetric −q1

α1 ◦ → → →
α′1 → ◦ → →
α2 ◦ ← ← ←
α′2 ← ◦ ← ←
β1 ◦ ◦ → ←
β′1 ◦ ◦ ← →
β2 ◦ ◦ ← →
β′2 ◦ ◦ → ←
β3 ◦ ◦ ← →
β′3 ◦ ◦ → ←

Table 6.2: Palindrome cyclotron loop edge transport directions for different behavioral
modes and different palindrome cyclotron loops. The loops are specified by
their type and the winding point if necessary. The directions are given for
patterns with large lattice constant on top, small on bottom. The symbol ◦
indicates no net movement without hysteresis, the symbol ◦ with ratchets and
thus hysteresis.

their color is given in Table 6.1. The colors of modes symmetric to each other have the
same hue but a different saturation. Modes that are detected only a few times, mostly
occurring at transitions between bigger phases, are colored in black and are not further
discussed. For patterns at unpainted areas the particle cannot cross the edge for one
loop type, usually when trying to move from the large into the small lattice. We have
computed phase diagrams for ∆φ = 35◦ and 70◦ shown in Figure 6.13 and Figure 6.14.

If we slightly move away from symmetric or maximal non-symmetric patterns by changing
∆x1

(s)
A by a small amount, we observe that either the phase diagram for small or for big

∆φ changes quickly. For small ∆φ the asymmetric phases get predominant, for large ∆φ
symmetric phases. One could say modulation loops with small ∆φ are less “symmetric”
than modulation loops with large ∆φ. An example for the fast transition from maximal
non-symmetric patterns is shown in Figure 6.15.

Drawing visual representations of the different asymmetric behavioral modes, such as
in Figure 6.12, we can easily see which phase has edge transport for which loop. For
the symmetric palindrome loops where we had s(n) = 0,±a, we can now give detailed
information about direction and existence of edge transport for the different phases, as
well as the direction for the asymmetric palindrome loops. They are summarized in
Table 6.2.
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Figure 6.13: Phasediagrams showing behavioral modes for ∆φ = 35◦. ∆x1
(s)
A are chosen

such that we get symmetric ((a) and (c)) and maximal non-symmetric
patterns ((b) and (d)).
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Figure 6.14: Phasediagrams showing behavioral modes for ∆φ = 70◦.
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Figure 6.15: Phasediagrams for ∆φ = 35◦ and 70◦ ((b) and (c)) where ∆x1
(s)
A = 0.1 a is

chosen close to ∆x1
(s)
A = 1

8a = 0.125 a, which are maximal non-symmetric
patterns. The resulting phase diagram for ∆φ = 35◦ is very close to the
phase diagram for ∆x1

(s)
A = 1

8a (Figure 6.13b). The phase diagram for
∆φ = 70◦ instead is similar to the phase diagram for ∆x1

(s)
A = 0 (Fig-

ure 6.14a) and has predominantly symmetric phases although the patterns
are still asymmetric. An example for a pattern with ∆x1

(s)
A = 0.1 a is shown

in (a).
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6.6 Symmetry considerations

6.6 Symmetry considerations

We now want to discuss the change of direction of edge transport s(LPal, P2) for palin-
drome loops with fixed ∆φ based on symmetry considerations for the pattern P2, the
palindrome modulation loop LPal and the symmetry of the corresponding behavioral
mode α(′)

i or β(′)
i . We can introduce a symmetry operation σ mirroring any of them with

a mirror plane perpendicular to the edge.

All of these can be mirror symmetric or can be mirrored to a distinct mirror image using
the symmetry operation σ with the mirror plane perpendicular to the edge. If something
is already symmetric, it is invariant under that operation, such that

σLPal,sym = LPal,sym (6.5a)

and
σP2,sym = P2,sym . (6.5b)

Starting by mirroring the pattern P2,asym and the loop LPal,asym if both are not sym-
metric, we have mirrored the whole system which mirrors the transport direction as well,
so

s(σLPal,asym, σP2,asym) = −s(LPal,asym, P2,asym) . (6.6)

Mirroring the pattern (or the loop) if the loop (or the pattern) is symmetric mirrors the
transport direction as well:

s(LPal,sym, σP2,asym) = −s(LPal,sym, P2,asym) (6.7a)

and
s(σLPal,asym, P2,sym) = −s(LPal,asym, P2,sym) (6.7b)

For the pattern and or the loop or both being symmetric, mirroring them changes
nothing, obviously. If we mirror just the pattern or the loop, both being asymmetric, we
can not easily say how the edge transport changes. But by using our previous mentioned
behavioral modes, we can give more information about that. If we look at symmetric
modes β, they are equivalent to symmetric patterns, so mirroring the loop mirrors the
edge transport, mirroring the pattern does nothing. For asymmetric modes α, mirroring
the loop does not change the transport direction, whereas mirroring the pattern changes
it. In this case we see a behavior like we had a symmetric loop, even if the loop is
asymmetric:

s(σLPal,asym, P2,asym) =

 s(LPal,asym, P2,asym) if in α(′)
i mode

−s(LPal,asym, P2,asym) if in β(′)
i mode

(6.8a)

and

s(LPal,asym, σP2,asym) =

−s(LPal,asym, P2,asym) if in α(′)
i mode

s(LPal,asym, P2,asym) if in β(′)
i mode

(6.8b)
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6.7 Fences

Using the method from section 5.5 we can find fences in control space from simulation
results for specific patterns. They represent the location of ratchets, so they get visible
only near the edge as the motion in the bulk is purely adiabatic. The fence locations for
modulations with different ∆φ for transporting the particle from the small into the large
lattice are combined to get a representation of the full fence. We are only interested
in patterns where the transport from the large to the small lattice is adiabatic for the
majority of loops. As we don’t see fences in adiabatic transport we don’t regard fence
diagrams for transfers from the large to the small lattice as they would be almost empty.
The fundamental modulation loops L−nq1 and Ln−q1 used to create the fence diagrams are
shown in Figure 6.17. Starting with the particle at one of the two different starting
points along the x1 axis in the small lattice shows different fences, colored differently
in magenta and cyan. Near the bulk fence points fences with different colors coexist,
because there we can also see parts of enlarged bulk fence points. These lead to adiabatic
transport if they are encircled without crossing any other fence. Trying to transport
a particle from the large to the small lattice with a modulation passing through an
enlarged fence point usually leads to a ratchet back to the large lattice such that no edge
crossing is possible. For patterns where we observe that the particle is unable to cross
the edge in both directions even with ∆φ = 35◦ these fence points are very large or can
be unfolded and connected with a neighboring enlarged fence point.

Looking at the results, Figure 6.18 and Figure 6.19, one can clearly see bifurcation points
separating the fence segments. By comparing the fences with the behavioral mode phase
diagrams for different ∆φ we can map the fence segments to behavioral modes. We
observe that for each proper transport loop from the small to the large lattice there is
only one ratchet involved. It can occur when the external magnetic field direction moves
from the south to the north pole or the other way round. That is because we cross the
edge only once during one modulation loop and bulk movements are always adiabatic.
That means we see a fence only in half of the φ-space, the other φ are at the part of
each loop where no ratchet occurs.

For a non-symmetric pattern the resulting fence is also not symmetric, see Figure 6.18.
If we add half of their periodicity to all three parameters ∆x1

(s)
A , ∆x2

(s)
A and ∆x2

(l)
A of

the pattern we get a fence diagram which looks different. Looking closer one can see
similarities between the fences. If we mirror one of the two fence diagrams and shift it
by φ = 180◦ we can see the relation between them. If you look at the phase diagrams,
performing this parameter shift leads to phases with an identical shape, see Figure 6.16.
This is because this specific pattern parameter change equals exchanging positive and
negative magnetization as described in Equation 2.4, so the relevant fence segments are
the same for both patterns.

Looking at symmetric patterns, Figure 6.19, we see that the fence in control space has
a symmetry plane perpendicular to the edge. Only the colors are interchanged in the
mirror image if the pattern has no non-alternating mirror plane for the magnetization we
start on. In this case there is only one adiabatic path for every starting cell in the small
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Figure 6.16: Phasediagrams for behavioral modes to show the periodicity of the phase
diagrams and the similarity between related modes, marked with the same
letter. Modes marked with A and C have the same shape as they are a
symmetry pair, modes B are self-symmetric. Both phases marked with C
(red and light green) have black and white exchanged, the same applies for
patterns marked with A, B1 and B2.

lattice and thus one ratchet path to the large lattice. So the other ratchet has to occur
starting from another position in the small lattice, explaining the change in color.

Furthermore, the fence diagrams show that the behavioral modes discussed before can
only be used for a constant ∆φ. If we want to use loops crossing the fence at different
∆φ, this simple representation of behavioral modes is not valid any more because the
relative positions are based on one edge crossing result which might not be the same for
different ∆φ. Going from north to south at a different ∆φ than from south to north, we
don’t know which behavioral mode applies because we cannot say which fence segment
we crossed without looking at the fence diagrams.
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Figure 6.17: Examples for loops used to find the fences, winding around the filled green
circles, showing the location of fence points for the bulk. The fence is
marked in magenta and cyan for the two possible starting positions in the
small pattern.

52



6.7 Fences

0◦

45◦

90◦

135◦

180◦
270◦ 0◦ 90◦ 180◦ 270◦

θ

φ

∆x1
(s)
A = 3

8a,∆x2
(s)
A = 0.25a,∆x2

(l)
A = 0.6a

0◦

45◦

90◦

135◦

180◦
270◦ 0◦ 90◦ 180◦ 270◦

0◦

45◦

90◦

135◦

180◦
270◦ 0◦ 90◦ 180◦ 270◦

θ

φ

∆x1
(s)
A = 1

8a,∆x2
(s)
A = 0,∆x2

(l)
A = 0.1a

0◦

45◦

90◦

135◦

180◦
270◦ 0◦ 90◦ 180◦ 270◦

Figure 6.18: Fences for a two non-symmetric patterns, the lines indicate the loops used
to create the phase diagrams. Both patterns are chosen such that only black
and white are exchanged so they share the same fences, only shifted by
180◦ in φ-direction and mirrored at the equator (θ = 90◦) and the colors
have changed. For the top pattern, the red loops at 35◦ and 215◦ cross the
middle of the fence segment, which equals the α1 phase in Figure 6.13d.
The blue loops at 70◦ and 250◦ directly cross bifurcation points, they are
between multiple behavioral modes, visible in Figure 6.14d. In the bottom
pattern the fences crossed by the red loops are responsible for phase α′1,
the blue loops hit the bifurcation point, they are again between multiple
behavioral modes.
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Figure 6.19: Fences in control space for two different symmetric patterns, symmetric
to a plane perpendicular to the edge at φ = 90◦. In the first image the
colors are symmetric as well, in the second they are inverse in the mirror
image. The difference is that the first pattern has a non-alternating mirror
plane for black where the particle starts, the second an alternating one.
The bifurcation point lies approximately at ∆φ = 60◦, so it is encircled by
one but not the other loop. As a result, the top pattern has the behavioral
modes β1 for ∆φ = 35◦ and β2 for ∆φ = 70◦, the bottom one β′1 (35◦) and
β′3 (70◦).
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7 Conclusions

Doing the experiments and simulations on the four-fold edge patterns, we could observe
and describe edge transport for a variety of loops. Using symmetry considerations we
can explain the experimental results, the absence or presence of transport of the colloidal
particles along the edge at the same time as other particles perform trivial motion in the
bulk of the pattern. Nevertheless, the details of the edge transport are complex and are
depending on the exact type of pattern and the bifurcation points wound around with
the loops in control space, so there is no obvious way to determine the resulting motion.
We found that the simulations based on Brownian dynamics match the experimental
result closely and are a good instrument to further study the problem. Thus we have
done simulations for a variety of patterns and loops and represented the results in phase
diagrams. We can combine this information to a behavioral mode for every combination
of a pattern and a set of fundamental loops, describing the edge transport behavior
for any combination of these loops. Hence we could classify two different types of
modes, symmetric and asymmetric modes, each showing similar behavior for the different
palindrome cyclotron loops. Looking at the fences in control space for the motion across
the edge, we could also see the topological nature of the edge. Using our findings, one
should be able to use combinations of the loops to induce transport only for specific
edges which could be used to create complex transport modes for multiple particles at
different edges.
Results from this Master thesis have been published in “Edge transport at the boundary
between topologically equivalent lattices” by Helena Massana-Cid, Adrian Ernst, Daniel
de las Heras, Adam Jarosz, Maciej Urbaniak, Feliks Stobiecki, Andreea Tomita, Rico
Huhnstock, Iris Koch, Arno Ehresmann, Dennis Holzinger and Thomas M. Fischer, Soft
Matter 15, 1539-1550 (2019).
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8 Zusammenfassung

Wir arbeiten mit mikrometergroßen superparamagnetischen Kern-Schale-Teilchen über
einem zweidimensionalen magnetischen Muster, das sich in einem externen Magnetfeld mit
sich ändernder Orientierung befindet. Dadurch bewegen sich die Teilchen in Abhängigkeit
von topologischen Invarianten, den Windungszahlen des Magnetfelds um bestimmte
Punkte [11]. Dieser topologische Transport unterscheidet sich für Muster verschiedener
Symmetrien, zum Beispiel Zwei-, Drei- oder Vierfachsymmetrie [12]. Davon abhängig
bewegt sich das Teilchen entweder nur adiabatisch, d.h. das Teilchen befindet sich
während der ganzen Bewegung in einem lokalen Minimum, oder es exisitieren Ratschen
in der Bewegung. Diese werden ausgelöst wenn ein Minimum und ein Sattelpunkt
aufeinandertreffen und sich vernichten, sodass sich das Teilchen entlang des Pfades des
steilsten Abstiegs in das nächste Minimum bewegt. Die Kombination von zwei Mustern
verschiedener Symmetrie kann zu besonderen Transporteffekten führen, wie zum Beispiel
zu „skipping orbits“ falls man ein hexagonales mit einem Streifenmuster kombiniert
[10]. Alternativ kann man auch zwei Muster kombinieren, welche sich nur durch ihre
Gitterkonstante unterscheiden [13].

In dieser Arbeit untersuchen wir Muster, welche aus zwei vierfachsymmetrischen Mus-
tern unterschiedlicher Gitterkonstanten kombiniert sind. Dabei ist eine Gitterkonstante
doppelt so groß wie die andere (Kapitel 2). Dadurch exisitieren in einer Einheitszelle
eines Musters doppelt so viele Minima wie in einem gleich großen Bereich des anderen.
Das wird vor allem an der Kante zwischen beiden Mustern deutlich, weil man einem
Minimum auf der einen Seite zwei Minima auf der anderen Seite zuordnen kann. Dadurch
entsteht, trotz rein adiabatischem Transport beim vierfachsymmetrischen Muster, die
Möglichkeit Ratschen zu erzeugen. Durch geeigneter Wahl der Modulation des externen
Magnetfelds können wir Teilchen entlang der Kante bewegen, wobei die Teilchen die sich
nicht an der Kante befinden triviale Bewegung beschreiben. Dadurch sind wir in unserer
Wahl der Modulationen beschränkt, und nutzen daher „cyclotron loops“, die zu einer
geschlossenen Bewegung abseits der Kante führen, oder „palindrome loops“, wobei die
Modulation des Magnetfelds zeitumkehrinvariant sind und dadurch im adiabatischen
Fall ebenfalls zu keiner Netto-Bewegung führen. Wir erklären die Bewegungen für die
verschiedenen Modulationen anhand von Symmetrieargumenten und unterstützen unsere
Theorie mit Hilfe von Experimenten und Simulationen. Die Experimente werden mit
paramagnetischen Teilchen auf einem dünnen magnetischen Muster durchgeführt, wobei
das externe Magnetfeld computergestützt von drei Spulen erzeugt wird (Kapitel 3). Die
Simulation wird mit Brownscher Dynamik durchgeführt, wobei das Teilchenpotential vom
externen Magnetfeld und vom Magnetfeld des Musters an der Stelle des Teilchens abhängt
(Kapitel 4, Kapitel 5). Wir sind so auch in der Lage, systematisch viele verschiedene
Muster auszuprobieren da unser Muster aufgrund der Kante von drei unabhängigen Pa-
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rametern bestimmt wird. Außerdem können wir so auch den topologischen Aspekt zeigen
und Bifurkationspunkte identifizieren, da die Simulation das automatische Probieren von
verschiedenen Modulationen ermöglicht. Die Experimente wurden in Zusammenarbeit
mit Helena Massana-Cid durchgeführt, die unsere Arbeitsgruppe von der Universität
Barcelona aus besuchte.

Die experimentellen Ergebnisse lassen sich vollständig mit Symmetrieargumenten er-
klären, allerdings lässt sich dadurch die Bewegung entlang der Kante nicht vollständig
voraussagen. Die Simulation tut dies hingegen und stimmt mit den Experimenten überein
(Kapitel 6). Die Ergebnisse zeigen, dass der Transport der Teilchen in komplexer Weise
von der Wahl der Muster-Parameter als auch von der gewählten Modulation abhängen.
Wir haben deshalb Phasendiagramme erstellt, um den Teilchentransport in Abhängigkeit
dieser Variablen zu visualisieren. Das Verhalten für verschiedene Modulationen lässt
sich auch zusammenfassen, sodass wir „Verhaltens“-Moden definieren können. Diese
lassen sich wiederum in symmetrische und asymmetrische Moden unterteilen, welche sich
jeweils ähnlich verhalten. Erwartungsgemäß finden wir durch Variation der Modulation
des externen Felds in der Simulation auch die Bifurkationspunkte für ein bestimmtes
Muster.
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